
... · t : t J. .L ·, .ii Jt I ':' ; ..

.. > ' ' ! .: ' , . il J.t J L -
... .L .) I '- a. • J .. JI I ;,_ .

:r: - J. ..l. .l .L .a 4 '.:'t : lo l. ~
. .. u

PC-2 Assembly Language
Article by Bruce Elliott

This is the first in a series of articles which will describe
the MPU (microprocessor unit) used in the Radio Shack PC-2
pocket computer. It is our intention to include specific infor
mation about the 8-bit CMOS microprocessor, the machine
code used by the microprocessor, as well as information
about the PC-2 memory map and certain ROM calls which
are available. Please realize that much of what we are talk
ing about refers to the overall capabilities of the MPU and
does not imply that all of these things can be done with
a PC-2. Some known precautions when working with the
PC-2 include:

• Po-This signal is not supplied to an external output
pin on the PC-2.

•Tl-The Timer Interrupt service routine is not available
on the PC-2. If a Timer Interrupt occurs, an RTI is
immediately executed.

• NMI-The Non-Maskable Interrupt is not available to
the programmer on the PC-2.

•The MPU signals BRO and BAK are not supplied to the
external output pins.

• Though MEO is available as an output from the M PU,
DMEO (from one of the support chips) performs a
similar function and should be used.

Please understand that the information provided in these
articles is the only information which is available. We will try to
clarify any ambiguities which occur in the articles, but can not
reply to questions outside the scope of these articles. Further,
published copies of TRS-80 Microcomputer News are the
only source of this information, and we will not be maintaining
back-issues. ·

PC-2 BLOCK DIAGRAM

OUTLINE OF THE 8-BIT CMOS MPU
The 8-bit MPU chip (LH5801) uses CMOS static technol-

ogy. This gives the M PU the low power dissipation inherent to
CMOS technology. The MPU incorporates the LCD back
plane signal generator, input port, external latch clock and
the timer.

The MPU features:
• 16 bit address bus
• 8 bit data bus
• 8 bit input port
• OMA and multiprocessor capabilities
• Contains a WAIT function for memory access control
• LCD backplane control
• Clock frequency of 2.6 MHz.

a. Internal machine cycle of 1.3MHz.
b. Minimum instruction execution time of 1.3

microseconds.
In the PC-2, the MPU performs the following functions:
• Key input routine
• Acknowledges remaining program lines
• Interprets program execution statements
• Interprets cassette control statements
• Interprets printer control statements
• Interprets command statements
• Display processing routine
• Arithmetic routines
• Print routine
• Instructs 1/0 chip to perform serial communications,

sound buzzer, and control counter/timer

8 Bit CMOS MPU Block Oiagram

MPU SIGNALS
<l>D-Output disable signal, when this signal is active, the data bus is in the

output mode.
<!>OS-This clock signal is in phase with the internal basic clock and is

supplied to the outside system. 2M Hz of the clock frequency is supplied
when a 4MHz crystal is being used between XLO and XL 1. Since PC-2
uses a 2.6MHz chip, the clock frequency is 1.3MHz.

ADO-AD15-Address bus. The address bus is tri-state and goes into the
high impedance state when a Bus Request, BRO, is issued.

TRS-80 Microcomputer News, March 1983 23

PH 8 PL 8 P: Program Counter

SH 8 s~--;---) S: Stack Pointer

XH 8 XL 8

-·
YH 8 YL 8

t--· ---·--1

UH 8 UL 8

--

x
} Dot• Add•m

y or

lJ General Purpose Register

A: Accumulator

0 0 0 H V Z T: Status Register

C: Carry and Borrow (inter-bytes)

IE: Interrupt Enable

---- Z: Zero Indication

TM s]

D
D
D

V: Overflow

H: Carry (inter-digits)

TM: Timer Counter

PU) General Purpose

PV Flip· flops

DISP : LCD Display On/Off Control

MPU Internal Reg isters arid Flip-flops

BAK-The BAK output is synchronized with the internal clock. When BAK
goes high, the Address Bus, Data Bus, MEO, ME1, R/W, and <t>D all turn
to the high impedance state Not used in PC-2.

BFO, BFl-BFO is an output of the BF flip-flop and BF! is an input to the BF
flip-flop. The BF flip-flop is normally used for the memory backup
system. In the PC-2, BFI is connected to the (BREAK) key, and goes
"high" when the <BREAK> key is depressed. BFO, in the PC-2, is
connected to the Chip Select Circuit and the Expansion Port.

BRO-Bus Request. The MPU responds to the BRO by turning BAK (Bus
Acknowledge) high . Not used in PC-2 Tied to GND.

DO-D? - Bidirectional data bus through which data is written to or read from
external memory

DISP-A flip-flop wh ich is used to control the on and off action of the L.C.D.
Instructions are provided to set and reset this fl ip-flop.

GND-Ground
HO-H7-These are the LCD backplane signals.
HA-Output of the MPU internal driver Divider output of 625 Hz in the PC-2.

Used by the display chips.
HIN-LCD backplane signal and an input to the counter that generates HO

H?. This is connected to HA in the PC-2 .
INO-IN7-This is the input port which the MPU uses to bring 8-bit data into

the internal accumulator. Internal pull-up resistance is present. In the
PC-2, the input port is connected to the keyboard.

MEO, ME1-The Memory Enable signals used by the MPU to directly
access a maximum of 128K bytes in external memory. In the PC-2, MEO
is connected to the chip select circuit and to the ME1 input of the 1/0
chip . In the PC-2, ME1 is connected to the MEO input of the 1/0 chip and
the expansion port.

Ml-The Maskable Interrupt Input signal. The MPU will respond to this
interrupt request when the Interrupt Enable flag (IE) is on. Interrupt

24 TRS-80 Microcomputer News, March 1983

processing will begin at the address indicated by FFF8 and FFF9. In the
PC-2 this is connected to the INT output of the 1/0 Chip

NM!-The Non-Maskable Interrupt Input The MPU will respond uncondi
tionally, and interrupt processing will begin at the address indicated by
the contents of FFFC and FFFD. Not used in the PC-2, tied to GND.

OPF- Operation Code Fetch . Allows the MPU to fetch an operation (instruc
tion) code OPF appears when an instruction code is fetched , during
address data and immediate data operations, and when the second
byte of a two step instruction is being fetched . Not used in the PC-2.

Pct>- External latch clock. The contents of the accumulator is transferred on
the data bus when this clock is in the high state, and can be used as an
output port when an external latch IC is present. Not used in the PC-2.

PU, PV-These are MPU internal flip-flops Set and reset instructions are
provided for both PU and PV. In the PC-2 , both PU and PV are con
nected to the expansion port PU is one of the enable signals for the
printer ROM .

R/W-Memory Read/Write Signal .
RESET -MPU reset input which causes the MPU to reset when a high signal

is received. Program execution beg ins at the memory address pointed
to by the contents of FFFE (low order) and FFFF (high order.) Execution
begins at the indicated address when the RESET input changes from a
high to a low state. On the PC-2 this is connected to the All Reset Switch .

VA - Power Supply to the LCD. High voltage for segment signals, 1.2 - 2.2
volts.

VB-Power Supply to the LCD. Low voltage for segment signals, 2- 1.2
volts.

Vee- +4.7 volts
VDIS-Power Supply to the LCD. +3.7 volts.
Vgg- + 4. 7 volts
VM-Power Supply to the LCD. An intermediate voltage used for the com

mon and segment signals . . 8-1 .6 volts.
WAIT-When the MPU receives a high signal at the WAIT input, the MPU

internal clock is halted to stop microprogram execution inside the MPU .
WA is an internal flip-flop which accepts the WAIT input at the falling
edge of the clock oOS and stops the MPU clock when it is in a high state.
Connected to the WAIT output of the 1/0 chip in the PC-2 . This informs
the CPU when memory or an 1/0 device is not ready.

XLO, XL 1-Crystal connection pins. PC-2 uses a 2.6MHz crystal which
operates the MPU at a 1.3MHz clock frequency. XLO-lnput, XL 1-
0utput

MPU DESIGNATIONS
A : "A" represents the 8-bit register (accumulator) used for retention of

arithmetical results or for data transfer with external (non-MPU) memory.
DISP: LCD display on/off control
P : "P" represents the 16-bit register (program counter) that indicates the

next address that follows the currently executing instruction , and is
automatically incremented by one when the next instruction is fetched .
The maximum 64K bytes addressed by MEO is addressable by P and
constitutes the program area.

PH· High order 8 bits of the program counter
PL: Low order 8 bits of the program counter
PU: General purpose flip-flop
PV: General purpose flip-flop
R · represents any one of the X, Y, or lJ 16-bit reg isters. These registers can

also be used as data pointers. When X, Y, or U are used as data pointers,
it becomes possible to issue Memory Enable signals, MEO and ME1 ,
independently A maximum of 128K bytes of memory area is available
to X, Y, and U (a maximum of 64K bytes in the memory area accessed
by MEO and another 64K bytes in the memory area accessed by ME1 .)

RH : represents any one of the high order XH, YH, or UH 8-bit registers
RL: represents any one of the low order XL, YL, or UL 8-bit registers.
S : "S" represents the 16-bit register (stack pointer) that indicates the next

available stack address for the push-down or pop-up stack in memory.
The maximum 64K bytes addressed by MEO is available as the stack
area.

SH : High order 8 bits of the stack pointer
SL: Low order 8 bits of the stack pointer
T : "T" represents the 5-bit register (status register or flags) designed to hold

status information such as: carry (C), borrow (H), zero (Z), overflow (V) ,
and interrupt enable (IE). The flags (C, H, Z, V), other than the interrupt
enable, can be tested by the conditional branch or conditional subrou
tine jump instructions

TM: "TM " is the 9-bit polynomial counter (timer counter)
U : 16-bit reg ister
UH : High order 8 bits of register U

UL Low order 8 bits of register U
X . 16-bit register
XH High order 8 bits of register X.

: XL Low order 8 bits of register X
Y 16-bit register
YH: High order 8 bits of register Y
YL: Low order 8 bits of register Y

OPERATIONAL SYMBOLS
-> : Signal or data flow
+- . Signal or data flow

. Logical AND
v . Logical OR
ffi · Exclusive OR
+ . Arithmetic addition
- : Arithmetic subtraction

MEMORY AND ADDRESS REPRESENTATION
Since the Memory Enable signals, MEO and MEI, are

output from the MPU, the PC-2 microprocessor can directly
access any area within I 28K bytes. MEO takes care of one
64K byte memory area and MEI another 64K byte memory
area. However, MEO is dedicated to program or data areas
and ME I to data area only.

0000

FFFF

MPU

Memory Area

accessible by

P, S, X, Y, and U

Memory Enable signal, MEO

0000

FFFF

Memory Area

accessible by

X, Y, and U

i
Memory Enable signal, ME1

Memory Area accessible by MPU

Address bus

16

Program or data area Data area

i
-- B +----+----+--------t--.--- Data bus

'-----------+---------+----" RIW

'----------t---------~ ME1

'-------------' MEO

(R) : The contents of the MEO accessible memory that can be specified by the
register R

#(R): The contents of the ME1 accessible memory that can be specified by
the register R.

(ab) "a" is a number that represents the high order 8 bits of the address and
"b" low order 8 bits of the address. Together, they indicate the contents
of the memory that can be represented by the 16 combined bits of a and
b (MEO accessible).

#(ab) : Same as the above, except that it can be accessed by ME1
ab. used in defining the conditional jumps and subroutine calls to designate

the two hex digits which comprise a single byte immediate value "i"

STATUS FLAGS
The status flags, C, V, H, Z, and IE are contained in the 5-bit status

register The contents of C, V, H, and Z may change upon completion of an
'arithmetic instruction .

Assume that the added results of each bit of the 9-bit full adder are as
follows:
2.7, 2:6, 2:5, 2:4, 2:3, 2::2, 2:1, 2:0, with carry of Cl, C6, CS, C4, C3 , C2, C1, CO.
The input conditions for each of flags shall be as described below·

C7 ----EJ
C3 --B

~7 + ~6 + ~s + ~o ----EJ
C6 ,+, C7 --G

(1) Carry flag C-The carry flag C is either set or reset depending on the
presence of a carry in C7 (8th bit).

(2) Half carry flag H-The half carry flag His either set or reset depending on
the presence of a carry in C3.

(3) Zero flag Z-The zero flag Z is dependent on the arithmetic results, it will
be set when the result is zero, otherwise, it will be reset.

(4) Overflow flag V-The overflow flag V is set when the arithmetic results of
one byte is in overflow, provided that the 8th bit is used for a sign with rest
of the 7 bits for used for numeric representation .

1/0 PORT CHIP
Contains:
• two 8 bit bi-directional ports, labeled PA and PB. Each bit in these two ports

can be programmed as either an input or an output. The CPU can
access PA or PB as one location in memory PA is used for the keyboard
strobe and PB is used for cassette, counter/timer, and as an interrupt
input.

• one 8 bit output port labeled PC. PC can be accessed as one location in
memory and is used for counter/timer control and to sound the buzzer.

•Two interrupt request inputs, used with< BREAK> and IRO inputs from the
expansion port

•one interrupt request output connected to the CPU .
• CPU WAIT control output. Outputs two memory enable signals, DMEO and

DME1, which ar-e used with memories that have slow access times.
• Controls serial communications. The two wait input lines, WO and W1, are

used in serial communications.

LCD DISPLAY CHIPS
Four display chips used for displaying information on the LCD, and as

memory space for fixed memories E$ -Z$. Display chips 1 and 3 are used for
the LCD display, indicators, and fixed memories E$ - 0$ Display chips 2 and
4 are used for the LCD display and for fixed memories P$ - Z$.

LCD

Segments 41 -60 Segments61-80

Even Addresses

I '"m•"'""'° '•om•"'"'"'°

·-----------i-----------~-----------~-----------1

I
\ Odd J Addresses

. I I

Display Display Dis~lay

Chip =1 Chip =2 Chip • 3

i ioo-03 i jDO-D3 i io4-07
7600-764D 7700-7740 7600-764D

OTHER PARTS OF THE PC-2 SYSTEM
• Chip Select Decoder Circuit
• 16K System ROM

i
Display

Chip •4

i io4-07
7700-7740

• 1 K System RAM (two 5514 RAM chips) . This RAM is used for fixed
memories A$ - D$, fixed memories A - Z, stack space, the 80 character
input buffer, and is used by FOR-NEXT statements.

• 2K User RAM (one 6116 RAM chip). This RAM is used for fixed memories
A27 or A$27 and above as well as being used for Reserve, Program
and Variable memory

• Buzzer circuit
• Counter/Timer circuit
• Module port
• Expansion port
• Keyboard .JD

TRS-80 Microcomputer News, March 1983 25

Memory Map:
0000 - 3FFF Module ROM - 16K
4000 - 47FF User RAM - 2K

4000 - 4007 Reserve Memory pointers
4008 - 4021 Menu 1
4022 - 403B Menu 2
403C - 4055 Menu 3
4056 - 40C3 Function Key Definitions
40C4 0 to mark end of function key definitions
40C5 - 47FF Program (Variable) Memory

4800 - 6FFF Module RAM
7000 - 75FF Duplicate of 7600 - 7BFF
7600 - 76FF Display Chip 1 & 3

7600 - 7640 LCD Display - Sections 1 & 3
764E Indicator

Bit 0 - Busy
Bit 1 - Shift
Bit 2 - Japanese
Bit 3 - Small
Bit 4 - III
Bit 5 - II
Bit 6 - I
Bit 7 - Def

764F Indicator
Bit 0 - De
Bit 1 - G
Bit 2 - Rad
Bit 3 ·
Bit 4 - Reserve
Bit 5 - Pro
Bit 6 - Run
Bit 7 -

7650 - 765F E$
7660 - 766F F$
7670 - 767F G$
7680 - 768F H$
7690 - 769F 1$
76AO 76AF J$
76BO · 76BF K$
76CO - 76CF L$
7600 - 760F M$
?GEO - 76EF N$
76FO · 76FF 0$

7700 - 77FF Display Chips 2 & 4
7700 - 774 0 LCD Display - Sections 2 & 4
774E - 774F Not used
7750 - 775F P$
7760 - 776F 0$
7770 - 777F R$
7780 - 778F S$
7790 - 779F T$
77AO - 77AF U$
77BO - 77BF V$
77CO - 77CF W$
7700 - 77DF X$
77EO - 77EF Y$
77FO - 77FF Z$

7800 - 7BFF System Memory - 1 K
7800 - 78BF System Memory - 192 Bytes
7863 RAM top - High order 8 bits
7864 RAM bottom - High order 8 bits
7865 · 7866 Beginning of BASIC program
7867 - 7868 End of BASIC program
7869 - 786A Head address of a BASIC program to perform editing based

on keyboard entries.
786B Beep On/Beep off
7875 LCD Cursor Position
7879 Cassette parameter F/F
7880 LCD display parameter F/F
7890 - 7893 Used by RIGHT$. LEFT$. MIO$
7894 String Buffer Pointer 7894 = 10H
7899 - 789A Start of variable storage area
789B Error Code = ERR/2 + 1
78CO - 78CF A$
7800 - 780F B$
?SEO · 78EF C$
78FO - 78FF 0$
7900 - 7907 A
7908 - 790F B
79 10 -7917C
7918 - 79 1F 0
7920 - 7927 E
7928 - 792F F
7930 - 7937 G
7938 - 793F H
7940 - 7947 I
7948 · 794F J
7950 - 7957 K
7958 - 795F L
7960 - 7967 M
7968 - 796F N
7970 - 7977 0
7978 - 797F P
7980 . 7987 0
7988 - 798F R
7990 - 7997 s
7998 · 799F T
79AO - 79A7 U
79A8 · 79AF V
79BO - 79B7 w
79B8 - 79BF X
79CO - 79C7 Y
79C8 - 79CF Z

7900 - 7BFF System Memory - 560 Bytes
79EO - 79E1 Printer X-axis position relative to origin
;~~~ : ;~~~ Printer Y-axis position relative to origin

79E6 Printer HCURSOR value
79E7 · 79E8
79E9 Printer pen up/down
79EA Printer line type

26 TRS-80 Microcomputer News, March 1983

79EB - 79EF
;~~~ Printer TexUGraphic mode

79F2 Printer ROTATE value
79F3 Printer pen color
79F4 Printer CSIZE
7 AOO - 7 AO? Numeric Data Buffer or String pointer
7 A 10 - 7 A 17 Nu_meric Data Buffer or String pointer
7B10 · 7B4F String Buffer
7B60 - 7B67 Tape out Synchronization header
7B68 - Tape out file mode
7B69 - 7B78 Tape out fi le name
7B79 - 7B84 Tape out header (available lo user)
7B85 · 7B86 Tape out # bytes in BASIC file -1
7B87 - 7B88 Tape out end header
7B91 - ?BAO Tape in file name
?BA 1 - ?BAB Tape in user header
7BAC - ?BAD Tape in # bytes in BASIC file -1
?BAE · 7BAF Tape in end header
7BBO - 7BFF 80 Character Display Buffer

?COO - 7FFF Duplicate of 7800 7BFF
8000 - BFFF Expansion ROM - 16K

A519 Change printer pen color
A769 Printer motor off
A781 Send ASCII character to printer (no LF)
ABDO Move pen
A9F1 Send line feed (LF) to printer
AA04 Send n line feeds to printer
AA09 Pen Up/Down
ABCB Switch printer from graphic to text mode
ABEF Switch printer from text to graphic mode
BBD6 Write tape synchronization header
BBF5 Finalization of tape 1/0 control
BCE8 Read tape synchronization header/search for filename
BD3C Read/Write file to tape
BDCC Send a character to tape
BDFO Read a character from tape
BF11 Turn tape drive on
BF43 Turn tape drive off

COOO - FFFF System Program ROM ·· 16K
0002 Magnitude Comparison for Numeric Values
DOF9 Magnitude Comparison for Character Strings
02EA Search for program line number
0461 Find address of variable
0925 String concatenation
09B1 CHR$
D9CF STR$
0907 VAL
0900 ASC if YL=60H. LEN if YL=64H
09F3 RIGHT$. LEFT$, MIO$
E243 Keyboard Scan - wail for character
E33F Auto Power Off
E42C Keyboard Scan - no wait
ESCA Display contents of display buffer
EDOO Output n characters lo LCD using current cursor location
ED3B Output n characters to LCD beginning at cursor = O
E040 Output one char to LCD and increment cursor position by one
EDS? Output one character to LCD
E095 Convert two bytes of ASCII code (0-9.A-F) into one byte of hex data
EDEF Output one graphic column to current cursor position
EFB6 X - Y-+ X
EFBA X + Y _, X
FOOB I/OP Flag 2
F01A X • Y -> X
F084 XI Y-+ X
FOE9 SOR X -+ X
F161 LNX-+X
F165 LOG X -+ X
F1CB EXP X-+ X
F104 10 ~- X -+ X
F391 COS X -+ X
F39E TAN X -+ X
F3A2 SIN X -+ X
F492 ACS X -+ X
F496 ATN X -+ X
F49A ASN X -+ X
F531 DEG X _, X
F564 OMS X -+ X
F597 ABS X -+ X
F590 SGN X -+ X
FSBE INT X -+ X
F89C Exponentiation (X ~ Y -+ X)

FFOO - FFF6 Vectors for jumps and calls
FFF8 - FFF9 Start Address for Ml routine
FFFA - FFFB Start Address for the Internal Timer
FFFC - FFFD Start Address for the NMI routine
FFFE - FFFF Start address for the RESET routine

• ·tf.ftj1@:W
TRS-80

MYHIM
,.POV.'ER-, s -·e;J @El un cm cm m:i i:m m

[§]~~e l]iID(Eill(IJil)~E\lUBEIDm
6J[EJ~~~1]1JtilE&Jriil6JDBD811
~~IBiilBWilliliif!i .d:J11 . nalll

;, ~ . lNS lC ·· ··. · .. - .;

~ [§) • '' • Kti •'·:~-1~!iJEll\f.1 16 111 LEJ 11 a 11 a

PC-2 Assembly Language-Part 2
Article by Bruce Elliott

This is the second in a series of articles which will de
scribe the MPU (microprocessor unit) used in the Radio
Shack PC-2 pocket computer. It is our intention to include
specific information about the 8-bit CMOS microprocessor,
the mach ine code used by the microprocessor, as well as
information about the PC-2 memory map and certain ROM
calls which are available. Please realize that much of what we
are talking about refers to the overall capabilities of the M PU,
and does not imply that all of these things can be done with a
PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi
guities which occur in the articles, but can not reply toques
tions outside the scope of these articles. Further, published
copies of TRS-80 Microcomputer News are the only source of
this information, and we will not be maintaining back issues.

Instruction Set

LOGICAL OPERATIONS
ADC- The contents of the internal register (RL or RH) , or the

contents of external memory [(R) , #(R) , (ab), or #(ab)]
is added into the accumulator including the carry C.
The result is stored in the accumulator. Flags C, H, Z,
and V rnay change after the execution of this
instruction.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

ADC XL A+ XL+ C - A 02 1 6
ADC YL A+ YL + C - A 12 1 6
ADC UL A+ UL+ C - A 22 1 6
ADC XH A+ XH + C - A S2 1 6
ADC YH A+ YH + C - A 92 1 6
ADC UH A+ UH + C - A A2 1 6
ADC (X) A+ (X) + C - A 03 1 7
ADC (Y) A+ (Y) + C - A 13 1 7
ADC (U) A+ (U) + C - A 23 1 7
ADC (ab) A+ (ab)+ C - A A3 ab 3 13
ADC #(X) A+ #(X) + C - A FD 03 2 11
ADC #(Y) A + #(Y) + C - A FD 13 2 11
ADC #(U) A + #(U) + C ··-A FD 23 2 11
ADC #(ab) A + #(ab) + C - A FD A3 ab 4 17

ADI-Performs immediate addition to the accumulator or to
external memory [(R) , #(R), (ab), or #(ab)]. Changes
may take place in C, H, Z, or V. The carry flag C will be
included in the immediate addition to the accumulator.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

ADI A,i A+i+C-A 83 i 2 7
ADI (X),i (X) + i -- (X) 4F i 2 13
ADI (Y),i (Y) + i - (Y) 5F i 2 13
ADI (U),i (U) + i - (U) 6F i 2 13
ADI (ab), (ab) + i - (ab) EF ab i 4 19
ADI #(X), #(X) + i - #(X) FD 4F i 3 17
ADI #(Y), #(Y) + i - #(Y) FD 5F i 3 17

ADI #(U),i #(U) + i - #(U) FD 6F i 3 17
ADI #(ab), i #(ab) + i - #(ab) FD EF ab i 5 23

ADR-The content of the accumulator is added into the
register R in 16 bits. Change may take place in C, H,
Z, or V.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

ADR X XL + A - XL FD CA 2 11
ADR Y YL + A - YL FD DA 2 11
ADR U UL + A - UL FD EA 2 11
Comment-RH+ 1 - RH if C7=1 (no change in CVHZ)

AND-The content of the accumulator is logically ANDed
with the content of external memory [(R), #(R), (ab), or
#(ab)] and the result is stored in the accumulator.
Change may take place in the Z flag only.

Mnemonic Symbolic Operation

AND (X) A " (X) - A
AND (Y) A " (Y) - A
AND (U) A " (U) - A
AND (ab) A " (ab) - A
AND #(X) A" #(X) - A
AND #(Y) A" #(Y) - A
AND #(U) A" #(U) - A
AND #(ab) A" #(ab) - A
Comment-" represents the AND operation

Hex
Op-Code Byte Cycle

09 1
19 1
29 1
A9 ab 3
FD 09 2
FD 19 2
FD 29 2
FD A9 ab 4

7
7
7

13
11
11
11
17

ANl-Logical AND of the accumulator and an immediate
value, or of external memory [(R) , #(R) , (ab), or #(ab)]
and an immediate value with the results stored in the
accumulator or external memory as indicated.
Change may take place in the Z flag only.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

ANI A,i A" i - A 89 i 2 7
ANI (X) ,i (X)" i -· (X) 49 i 2 13
ANI (Y),i (Y) " i - (Y) 59 i 2 13
ANI (U),i (U) " i - (U) 69 i 2 13
ANI (ab) ,i (ab) " i - (ab) E9 ab i 4 19
ANI #(X),i #(X)" i - #(X) FD 49 i 3 17
ANI #(Y),i #(Y)" i - #(Y) FD 59 i 3 17
ANI #(U),i #(U)" i - #(U) FD 69 i 3 17
ANI #(ab),i #(ab) " i - #(ab) FD E9 ab i 5 23

DCA-The content of external memory [(R) or #(R)] including
the carry C is added to the accumulator in the binary
coded-decimal (BCD) system and the result is stored
in the accumulator. Change may take place in C, H, Z,
or V.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

DCA (X) A+ (X) + C - A SC 1 15
DCA (Y) A+ (Y) + C - A 9C 1 15
DCA (U) A+ (U) + C - A AC 1 15
DCA #(X) A + #(X) + C - A FD SC 2 19

TRS-SO Microcomputer News, April 19S3 39

DCA #(Y) A + #(Y) + C - A FD 9C 2 19
DCA #(U) A + #(U) + C - A FD AC 2 19

DCS-The content of the external memory [(R) or #(R)],
including the carry C is subtracted from the content of
the accumulator in the BCD system, and the result is
stored in the accumulator. Change may take place in
C, H, Z, or V.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

DCS (X) A-(X)-C - A OC 1 13
DCS (Y) A-(Y)-C - A 1C 1 13
DCS (U) A-(U)-C - A 2C 1 13
DCS #(X) A-#(X)-C - A FD OC 2 17
DCS #(Y) A - #(Y) - "Q_ - A FD 1 C 2 17
DCS #(U) A-#(U)-C - A FD 2C 2 17

DEC-Decrements the accumulator or the register (RL, RH,
or R). Change may take place in C, V, H, and Z for the
decrement of the accumulator, or the register, RL or
RH. But no change takes place in flags when the 16-
bit R is decremented.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

DEC A A - 1 - A OF 1 5
DEC XL XL - 1 - XL 42 1 5
DEC YL YL - 1 - YL 52 1 5
DEC UL UL-1 - UL 62 1 5
DEC XH XH - 1 - XH FD 42 2 9
DEC YH YH - 1 - YH FD 52 2 9
DEC UH UH 1 - UH FD 62 2 9
DEC X X - 1 - X 46 1 5
DEC Y Y - 1 - Y 56 1 5
DEC U U - 1 - U 66 1 5

EAi-The accumulator is EXCLUSIVE ORed with an immedi-
ate value and the result is stored in the accumulator.
Change may take place in the Z flag only.

Mnemonic Symbolic Operation
Hex
Op-Code Byte Cycle

EAi i A © i - A BO i 2 7
Comment-© - represents the XOR operation

EOR-Logical EXCLUSIVE OR (XOR) of the accumulator
with external memory [(R), #(R), (ab), or #(ab)] is
performed and the result is stored in the accumulator.
Change may take place in the Z flag.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

EOR (X) A © (X) - A OD 1 7
EOR (Y) A © (Y) - A 1 D 1 7
EOR (U) A © (U) - A 2D 1 7
EOR (ab) A © (ab) - A AD a b 3 13
EOR #(X) A © #(X) - A FD OD 2 11
EOR #(Y) A © #(Y) - A FD 1D 2 11
EOR #(U) A © #(U) - A FD 2D 2 11
EOR #(ab) A © #(ab)-·A FD AD a b 4 17

INC-Increments the accumulator or the register (RL, RH, or
R). Change may take place in C, V, H, and Z for an
increment of the accumulator, or the registers, RL or
RH. But no change takes place in flags when the 16-bit
register R is incremented.

Mnemonic Symbolic Operation

A+ 1 - A

Hex
Op-Code Byte Cycle

INC A
INC XL
INC YL
INC UL
INC XH
INC YH
INC UH

XL + 1 - XL
YL + 1 - YL
UL + 1 - UL
XH + 1 - XH
YH + 1 - YH
UH + 1 ,._UH

DD
40
50
60
FD 40
FD 50
FD 60

40 TRS-80 Microcomputer News, April 1983

1 5
1 5
1 5
1 5
2 9
2 9
2 9

INC X X + 1 - X 44 5
INC Y Y + 1 - Y 54 5
INC U U + 1 - U 64 5

ORA-The accumulator is logically ORed with external
memory [(R), #(R), or (ab)] and the result is stored in
the accumulator. Change may take place in the Z flag
only.

Mnemonic Symbolic Operation

ORA (X) A v (X) - A
ORA (Y) A v (Y) - A
ORA (U) A v (U) - A
ORA (ab) A v (ab) - A
ORA #(X) A v #(X) -· A
ORA #(Y) A v #(Y) - A
ORA #(U) A v #(U) - A
ORA #(ab) A v #(ab) - A
Comment-v - represents the OR operation

Hex
Op-Code Byte Cycle

OB 1
1B 1
2B 1
AB ab 3
FD OB 2
FD 1B 2
FD 2B 2
FD AB ab 4

7
7
7

13
11
11
11
17

ORI-Logical OR of the accumulator or external memory
[(R), #(R), (ab), or #(ab)] with an immediate value. The
result is stored in the accumulator or the external mem
ory as indicated. Change may take place in the Z flag
only.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

ORI A,i Av i - A BB i 2 7
ORI (X),i (X) vi - (X) 4B i 2 13
ORI (Y),i (Y) vi - (Y) 5B i 2 13
ORI (U),i (U) vi - (U) 6B i 2 13
ORI (ab),i (ab) vi - (ab) EB ab i 4 19
ORI #(X),i #(X) v i - #(X) FD 4B i 3 17
ORI #(Y),i #(Y) vi - #(Y) FD 5B i 3 17
ORI #(U),i #(U) v i - #(U) FD 6B i 3 17
ORI #(ab),i #(ab) vi - #(ab) FD EB ab i 5 23

SBC-The content of the internal register [RL or RH] or
external memory [(R), #(R),(ab), or #(ab)] including
the carry C is subtracted from the accumulator and
the result is stored in the accumulator. Change may
take place in C, H, Z, or V.

This operation can be expressed in the following
manner: The complement of the contents in the inter
nal register, RL or RH, or external memory, (R), #(R),
(ab), or #(ab) is first obtained. Then the complement is
added into the accumulator including the carry C, and
the result is stored in the accumulator. Change may
take place in C, H, Z, or V.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

SBC XL A-XL-C - A 00 1 6
SBC YL A - YL - C - A 10 1 6
SBC UL A-UL-C - A 20 1 6
SBC XH A - XH - C - A 80 1 6
SBC YH A - YH - C - A 90 1 6
SBC UH A-UH-C - A AO 1 6
SBC (X) A-(X)-C - A 01 1 7
SBC (Y) A-(Y)-C - A 11 1 7
SBC (U) A-(U)-C - A 21 1 7
SBC (ab) A-(ab)-C - A A1 ab 3 13
SBC#(X) A-#(X)-C-A FD01 2 11
SBC #(Y) A-#(Y)-C -A FD 11 2 11
SBC #(U) A-#(U)-C -A FD 21 2 11
SBC #(ab) A-#(ab)-C -A FD A1 ab 4 17

SBI-The immediate value including the carry C is sub-
tracted from the accumulator and the result is stored in
the accumulator. Change may take place in C, H, Z,
or V.

Mnemonic

SBI A,i

Symbolic Operation

A-i-C - A

COMPARISONS, BIT TESTS

Hex
Op-Code Byte Cycle

B1 i 2 7

Bii-The accumulator or external memory [(R), #(R), (ab), or
#(ab)] is logically ANDed with an immediate value. The
result of the test is in the Z flag. Change may take place
in the Z flag only.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

Bii A,i A" i - Z BF i 2 7
Bii (X),i (X) " i - Z 40 i 2 10
Bii (Y),i (Y)" i - Z 50 i 2 10
Bll(U),i (U)"i-Z 60i 2 10
Bii (ab),i (ab) " i - Z ED a b i 4 16
Bii #(X),i #(X)" i - Z FD 40 i 3 14
Bii #(Y),i #(Y)" i - Z FD 50 i 3 14
Bii #(U),i #(U)" i - Z FD 60 i 3 14
Bii #(ab),i #(ab) " i - Z FD ED a b i 5 20
Comment-" - represents tt1e AND operation

BIT - The accumulator is logically AN Ded with external
memory [(R), #(R), (ab), or #(ab)]. The result is in Z.
Change may take place in the Z flag only.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

BIT (X) A " (X) - Z OF 1 7
BIT (Y) A " (Y) - Z 1 F 1 7
BIT (U) A " (U) - Z 2F 1 7
BIT (ab) A " (ab) - Z AF a b 3 13
BIT #(X) A" #(X) - Z FD OF 2 11
BIT #(Y) A " #(Y) - Z FD 1 F 2 11
BIT #(U) A " #(U) - Z FD 2F 2 11
BIT #(ab) A " #(ab) - Z FD AF a b 4 17

CPA-Compares the contents of the accumulator with that of
the register, RL or RH, or external memory, (R), #(R),
(ab), or #(ab). Change may take place in C, V, H, or Z.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

CPA XL A-XL 06 1 6
CPA YL A-YL 16 1 6
CPA UL A-UL 26 1 6
CPA XH A-XH 86 1 6
CPA YH A-YH 96 1 6
CPA UH A-UH A6 1 6
CPA (X) A-(X) 07 1 7
CPA (Y) A-(Y) 17 1 7
CPA (U) A-(U) 27 1 7
CPA (ab) A-(ab) A7 ab 3 13
CPA #(X) A-#(X) FD 07 2 11
CPA #(Y) A-#(Y) FD 17 2 11
CPA #(U) A-#(U) FD 27 2 11
CPA #(ab) A-#(ab) FD A7 ab 4 17
Comment-- If C Z v H

A)op 1 O
A=op 1 1
A(op 0 O

V and H may change depending upon the arithmetic result of the
compare.

CPI-The content of the accumulator or the register RL or
RH, is compared with the immediate value, i. Change
may take place in C, V, H or Z.

Mnemonic

CPI A,i
CPI XL,i

Symbolic Operation

A-i
XL-i

Hex
Op-Code Byte Cycle

B7i
4E i

2
2

7
7

CPI YL,i YL - i 5E i 2 7
CPI UL,i UL-i 6E i 2 7
CPI XH, i XH - i 4C i 2 7
CPI YH,i YH-i 5C i 2 7
CPI UH,i UH-i 6C i 2 7
Comment- If C Z V H

(op) > i 1 o
(op) = i 1 1
(op)< i o o

V and H may change depending upon the arithmetic result of the
compare.

LOAOS,STORES

ATT - The content of the accumulator is transferred to the T
register. All flags are subject to change depending on
the content of A.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

ATI A-T FD EC 2 9
Comment-T - Status Register

LOA-The content of the register, RL or RH, or external
memory [(R), #(R), (ab), or #(ab)] is loaded into the
accumulator. When the content loaded is "00" , it sets
the flag Z. No change is made with respect to other
flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

LOA XL XL - A 04 1 5
LOA YL YL - A 14 1 5
LOA UL UL - A 24 1 5
LOA XH XH - A 84 1 5
LOA YH YH - A 94 1 5
LOA UH UH - A A4 1 5
LOA (X) (X) - A 05 1 6
LOA (Y) (Y) - A 15 1 6
LOA (U) (U) - A 25 1 6
LOA (ab) (ab) - A AS a b 3 12
LOA #(X) #(X) - A FD 05 2 10
LOA #(Y) #(Y) - A FD 15 2 10
LOA #(U) #(U) - A FD 25 2 10
LOA #(ab) #(ab) - A FD A5 ab 4 16

LOE-The content of the register R is decremented upon
loading the content of the external memory (R) into the
accumulator. Change may take place only in the Z
flag.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

LOE X (X) - A, X - 1 - X 4 7 1 6
LOE Y (Y) - A, Y - 1 - Y 57 1 6
LOE U (U) - A, U - 1 - U 67 1 6

LOI-The immediate value is loaded into the accumulator,
register (RL or RH), or the stack pointer S. Only the
immediate value being placed in S may contain 2
bytes. When using LOI A,i the Z flag may change.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

LOI A,i i - A B5 i 2 6
LOI XL,i i - XL 4A i 2 6
LOI YL,i i - YL 5A i 2 6
LOI UL,i i - UL 6A i 2 6
LOI XH,i i - XH 48 i 2 6
LOI YH,i i - YH 58 i 2 6
LOI UH,i i - UH 68 i 2 6
LDIS,i,j i-SH,j-SL AAij 3 12

LOX-The content of the register R, stack pointer S, or
program counter P is loaded into the X register. No
change takes place in flags.

TRS-80 Microcomputer News, April 1983 41

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

LOX X X - X FD OS 2 11
LOX Y Y - X FD 1 S 2 11
LOX U U .. _ X FD 2S 2 11
LOX S S - X FD 4S 2 11
LOX P P - X FD 5S 2 11

LIN-Increments R upon loading the content of the external
memory (R) into the accumulator. Change may take
place only in the Z flag.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
LIN X (X) - A, X + 1 - X 45 1 6
LIN Y (Y) - A, Y + 1 - Y 55 1 6
LIN U (U) - A, U + 1 U 65 1 6

POP-The contents placed on the stack by PSH is returned
to the accumulator, A or the register, R. POP incre
ments S by one in the case of the accumulator, and
increments S by two in the case of a register. The Z
flag may change as a result of the POP.

Mnemonic Symbolic Operation

(S+I) - A, S+1 - S
(S+ 1) - XH,

Hex
Op-Code Byte Cycle

POP A
POP X

POP Y

POP U

(S+2) - XL, S+2 - S
(S+I) - YH,
(S+2) - YL, S+2 - S
(S+I) - UH,

FD SA

FD OA

FD IA

2 12

2 15

2 15

(S+2) - UL, S+2 - S FD 2A 2 15

PSH-The content of the accumulator A or register R is
stacked into the memory location specified by S. PSH
decrements S by one in the case of the accumulator,
and decrements S by two in the case of the register R.
No change takes place in flags.

Hex
Mnemonic Symbolic Operation

A - (S), S - I - S
XL - (S),

Op-Code Byte Cycle

PSH A
PSH X

PSH Y

PSH U

XH - (S-1), S-2 -S
YL - (S),
YH - (S-1), S-2 -S
UL - (S),

FD CS 2 11

FD SS 2 14

FD 9S 2 14

UH - (S-1), S-2 -S FD AS 2 14

SOE-The register R is decremented after the content of the
accumulator is stored in external memory (R). No
change takes place in flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

SOE X A - (X), X I - X 43 I 6
SOE Y A - (Y), Y - I - Y 53 1 6
SOE U A - (U), U I - U 63 1 6

SIN-The register R is incremented after content of the accu-
mulator is stored in external memory (R). No change
takes place in flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
SIN X A - (X), X + 1 - X 41 I 6
SIN Y A - (Y), Y + 1 - Y 51 I 6
SIN U A - (U), U +I - U 61 I 6

STA-The content of the accumulator is stored into register,
RL or RH, or into external memory [(R), #(R), (ab),
#(ab)]. No change takes place in flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
STA XL A - XL OA 1 5
STA YL A - YL IA I 5
STA UL A- UL 2A 1 5

42 TRS-SO Microcomputer News, April I 9S3

STA XH A - XH OS 5
STA YH A- YH 18 5
STA UH A- UH 2S I 5
STA (X) A- (X) OE I 6
STA (Y) A- (Y) 1E 1 6
STA (U) A- (U) 2E 1 6
STA (ab) A - (ab) AE ab 3 12
STA #(X) A - #(X) FD OE 2 10
STA #(Y) A - #(Y) FD IE 2 10
STA #(U) A - #(U) FD 2E 2 10
STA #(ab) A - #(ab) FD AE ab 4 16

STX-The content of the X register is stored into register R,
stack pointer S, or program counter P. No change
takes place in flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

STX X X-X FD 4A 2 11
STX Y X-Y FD 5A 2 11
STX U X-U FD 6A 2 11
STX S X-S FD 4E 2 11
STX P X-P FD 5E 2 11

TTA-The content of the T register is transferred to the
accumulator. The Z flag may change as a result of this
operation.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
TTA T - A FD AA 2 9
Comment-T - Status Register

BLOCK TRANSFER, SEARCH
AEX-The high order 4 bit digit in the accumulator is ex

changed with the lower order 4 bit digit.

Mnemonic

AEX

Symbolic Operation
A

ol

Hex
Op-Code

Fl

Byte Cycle

6

CIN-The content of the accumulator is compared with the
content of the external memory (X), the flags C, V,
H, and Z are set by the compare, then X register is
incremented.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

CIN A - (X), X + 1 - X F7 1 7

DAL-Performs digit-to-digit forward rotation between the
accumulator and external memory, [(X) or #(X)]. No
change takes place with respect to flags.

Mnemonic Symbolic Operation
Hex
Op-Code Byte Cycle

DRL (X)
DRL #(X) ~ ©

A (X) or #(X)

07
FD 07

I
2

12
16

ORR-Performs digit-to-digit backward rotation between the
accumulator and external memory [(X) or #(X)]. No
change takes place with respect to flags.

Mnemonic

ORR (X)
ORR #(X)

Symbolic Operation

~Q;J
A (X) or #(X)

Hex
Op-Code Byte Cycle

03
FD 03

1
2

12
16

AOL-Forward rotation is made between the accumulator
and the flag C. Flags C, V, H, and Z are subject to
change. Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

ROL L[g+-1 7 0 lJ DB 1 6

A

ROA-Backward rotation is made between the accumulator
and the flag C. Flags C, V, H, and Z are subject to
change.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

ROR L[£]-I 7 o µ 01 9

A
SHL--The content of the accumulator is shifted to the left.

Flags C, V, H, and Z are subject to change.

SHL @J-[1 o I~- a 09 6
A

SHR-The content of the accumulator is shifted to the right.
Flags C, V, H, and Z are subject to change.

SHR o - I 7 o 1- @] os 9
A

TIN---The content of the external memory (X) is transferred
into the external memory (Y), the X and Y registers are
then incremented. No change takes place in flags.

Mnemonic

TIN

Symbolic Operation

(X) - (Y),
X + 1 - X, Y + 1 - Y

INPUT /OUTPUT

Hex
Op-Code Byte Cycle

F5 7

AMO-- The contents of the accumulator is transferred timer.
Since the timer is composed of a 9-bit polynomial
counter, the content of the accumulator is set in the 1st
through 8th bits of the counter and "O" is set in the 9th
bit. It causes no change in flags.

Mnemonic

AMO

Symbolic Operation

A - Timer (0-7)
0 - Timer (S)

Hex
Op-Code

FD CE

Byte Cycle

2 9

AM1 -"Sarne as AMO, except that "1" is set in the 9th bit. It
causes no flag changes.

AM1 A - Timer (0-7)
1 - Timer (S) FD DE 2 9

ATP-Sends the content of the accumulator to the external
data bus. It causes no flag change.

Mnemonic
ATP

Symbolic Operation

A - Data Bus

Hex
Op-Code Byte Cycle
FD CC 2 9

CDV-Clears the internal divider. It causes no flag changes.

Mnemonic
CDV

Symbolic Operation
0 - Divider

Hex
Op-Code
FD SE

Byte Cycle
2 s

HLT--The MPU is put into a halt state when this instruction is
executed, except that the divider is still in operation.
M PU operation can be resumed by means of the
interrupt. No changes in flags occur.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

HLT FD B1 2 9

ITA-The contents of the input IN is transferred to the accu
mulator. Change may take place in the Z flag, but there
will be no change in other flags.

Mnemonic

ITA

Symbolic Operation

IN -A

Hex
Op-Code Byte Cycle

FD BA 2 9

NOP-No operation

Mnemonic

NOP

Symbolic Operation
Hex
Op-Code

3S

Byte Cycle

1 5

OFF-Resets the BF flip-flop. It causes no change in the
flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
OFF 0 - BF FD 4C 2 s

RDP-Resets display flip··flop.
Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

RDP O - Display FD CO 2 s

REC- Resets the carry flag C off. It causes no change in
other flags.

Mnemonic

REC

Symbolic Operation

0-C
Byte Cycle

1 4

RIE-Resets the Interrupt Enable (IE) flip-flop off. It causes no
change in other flags.

Mnemonic
RIE

Symbolic Operation

0 - IE

Hex
Op-Code
FD BE

Byte Cycle

2 s

RPU-Resets the general purpose flip-flop PU off. It causes
no change in other flags.

Mnemonic

RPU

Symbolic Operation

0 - PU

Hex
Op-Code

E3

Byte Cycle

1 4

RPV-Resets the general flip-flop PV off. It causes no
change in other flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
RPV 0 - PV BS 1 4

SDP--Sets display flip-flop.
Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
SOP 1 ··- Display FD C1 2 s

SEC--Sets the carry flag Con. It causes no change in other
flags.

Mnemonic
SEC

Symbolic Operation
1-C

Hex
Op-Code Byte Cycle
FB 1 4

SIE-Sets the Interrupt Enable (IE) flip-flop on. It causes no
change in other flags.

Mnemonic
SIE

Symbolic Operation
1 - IE

Hex
OpmCode Byte Cycle
FD S1 2 S

SPU-Sets the general purpose flip-flop PU on. It causes no
change in other flags.

Mnemonic

SPU

Symbolic Operation

1 - PU

Hex
Op-Code

E1

Byte Cycle

1 4

SPV-Sets the general purpose flip-flop PV on. It causes no
change in other flags.

Mnemonic
SPV

Symbolic Operation

1 - PV

Hex
Op-Code
AS

Byte Cycle

1 4

TRS-SO Microcomputer News, April 19S3 43

Pocket Computer

PC-2 Assembly Language-Part 3
By Bruce Elliott

This is the third in a series of articles which will describe
the MPU (microprocessor unit) used in the Radio Shack
PC-2 pocket computer. It is our intention to include specific
information about the 8-bit CMOS microprocessor, the ma
chine code used by the microprocessor, as well as informa
tion about the PC-2 memory map, and certain ROM calls
which are available. Please realize that much of what we
are talking about refers to the overall capabilities of MPU,
and does not imply that all of these things can be done with a
PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi·
guities which occur in the articles, but can not reply toques
tions outside the scope of these articles. Further, published
copies of TRS-80 Microcomputer News are the only source of
this information, and we will not be maintaining back issues.
Parts One and Two of this series were published in the March
and April issues, respectively.

JUMPS/BRANCHES

BCH-Causes a relative jump to a new program area that is
determined by adding/subtracting the immediate
value i to/from the program counter P.

Mnemonic
8CH+i
8CH- i

Symbolic Operation
P+i-P
P-i-P

Hex
Op-Code
SE i
9E i

Byte Cycle
2 s
2 9

BCR-Conditional relative jump instruction. The relative
jump is made when "C = O'.' If "C ·= 1 '; control pro
ceeds to the next instruction. It causes no flag
changes.

Mnemonic Symbolic Operation
8CR+i ifC=O, P+ i-P
8CR-i if C=O, P- i-P
Comment-If C = 1, no jump

Hex
Op-Code
S1 i
91 i

Byte Cycle
2 S-11
2 S-11

BCS-Conditional relative jump instruction . When the condi
tion "C = 1" is met, a relative jump is made to the
program area that is found after adding/subtracting
the immediate value i to/from the program counter P. If
"C = O", control proceeds to the next instruction with
out making the relative jump. It causes no flag
change.

Mnemonic Symbolic Operation
8CS + i if C = 1 , P + i-P
8CS - i if C = 1 , P - i- P
Comments-if C=O, no jump

Hex
Op-Code
S3 i
93 i

Byte Cycle
2 S-11
2 S-11

BHR- A relative jump is made when "H =0". If "H = 1 ';
control proceeds to the next instruction . It causes no
flag changes.

Mnemonic Symbolic Operation
8HR+i if H=O, P+i-P
BHR-i if H =0, P-i-P
Comment-if H = 1, no jump

Hex
Op-Code
S5 i
95 i

Byte Cycle
2 S-11
2 S-11

BHS-A relative jump, is made when "H = 1 '.'If "H =0'; con
trol proceeds to the next instruction. It causes no flag
changes.

Mnemonic Symbolic Operation
8HS+i if H=1 , P+ i-P
BHS-i if H = 1, P-i-P
Comment-if H =0, no jump

Hex
Op-Code
S7 i
97 i

Byte Cycle
2 S-11
2 S-11

BVR-A relative jump is made when "V = O'.' If "V = 1 ·;control
proceeds to the next instruction. It causes no flag
changes.

Mnemonic Symbolic Operation
BVR+i if V=O, P+i-P
8VR-i if V=O, P - i-P
Comment- if V = 1, no jump

Hex
Op-Code
soi
90 i

Byte Cycle
2 S-11
2 S-11

BVS--A relative jump is made when "V = 1 '.' If "V = o·; control
proceeds to the next instruction. It causes no flag
changes.

Mnemonic Symbolic Operation
8VS+i ifV=1 , P + i-P
BVS-i if V= 1, P- i-P
Comment- if V=O, no jump

Hex
Op-Code
SF i
9F i

Byte Cycle
2 S-11
2 S-11

BZR-A relative jump is made when "Z = O'.' If "Z = 1 ';control
proceeds to the next instruction. It causes no flag
changes.

Mnemonic Symbolic Operation
8ZR + i if Z=O, P+ i-P
BZR- i if Z=O, P-i-P
Comment-if Z = 1, no jump

Hex
Op-Code
S9 i
99 i

Byte Cycle
2 S-11
2 S-11

BZS- A relative jump is made when "Z = 1 '.' If "Z = O',' control
proceeds to the next instruction. It causes no flag
changes.

Mnemonic Symbolic Operation
8ZS + i · if Z = 1 , P + i-P
8ZS -i if Z=1 , P- i-P
Comment-if Z=O, no jump

Hex
Op-Code
S8 i
98 i

Byte Cycle
2 S-11
2 S-11

JMP-Causes a jump to a new program area implied by the
immediate value in the second and third bytes. It
causes no flag change.

Mnemonic
JMP i,j

Symbolic Operation
i-PH, j-PL

Hex
Op-Code Byte Cycle
BA i j 3 12

TRS-SO Microcomputer News, May 19S3 33

LOP-This instruction causes a relative jump to a new pro
gram area if, when UL is reduced by 1, no borrow
occurs (i.e., UL remains positive or zero). The new
program area is determined by subtracting the imme
diate value i from P. If a borrow occurs when UL is
reduced by 1, no jump takes place and execution
proceeds to the next instruction. It causes no flag
changes.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
LOP UL,i UL-1-UL 88 i 2 S-11
Comment-if borrow =1, no jump; if borrow =0, P-i-P

CALLS

SJP-Makes a subroutine jump to the address specified by
the immediate values i and j. At the same time, the
address of the next instruction is stored in the stack. It
causes no flag changes.

Hex
Mnemonic
SJP

Symbolic Operation
PL-(S), PH-(S-1),
S-2-S, i-PH, j-PL

Op-Code Byte Cycle
BE i j 3 19

VCR-Conditional vector subroutine jump. When "C = o·:
the vector subroutine jump is performed. If "C = 1 ','the
control proceeds to the next instruction. The Z flag is
reset after the jump. VCR uses FFOO through FFF6 as
its vector address table, and the values 00 through F6
are valid for the immediate value.

Mnemonic
VCR i

Symbolic Operation
if C=O,
PH-(S-1), PL-(S)
(FFab)-PH, (FFab+ 1)-PL
S-2-S

Hex
Op-Code
C1 i

Comment-if C = 1, no jump, ab = Hex digits in i

Byte Cycle
2 S-21

VCS-Conditional vector subroutine jump. When "C = 1 ·: it
performs the vector subroutine jump. If "C = o·: the
control proceeds to the next instruction. The Z flag is
reset after the jump. VCS uses FFOO through FFF6 as
its vector address table and the values 00 through F6
are valid for the immediate value.

Mnemonic
VCSi

Symbolic Operation
if C=1,
PH-(S-1), PL-(S)
(FFab)-PH, (FFab+ 1)-PL
S-2-S

Hex
Op-Code
C3 i

Comment-if C=O, no jump, ab = Hex digits in i

Byte Cycle
2 S-21

VEJ-Vector subroutine jump. VEJ is a one byte instruction
which makes a subroutine jump based on a vectored
address. The vector table is located in memory from
FFOO to FFF6. The Z flag is reset after the vector jump
is executed.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VEJ (ab) PL-(S), S-1--S
VEJ (CO) PH-(S), S-1-S co 17
VE,J (C2) (FFab)-PH C2 17
VEJ (C4) (FFab+1)-PL C4 17
VE,J (CG) CG 17
VEJ (CS) cs 17
VEJ (CA) CA 17
VEJ (CC) cc 17
VEJ (CE) CE 17

34 TRS-80 Microcomputer News, May 19S3

VEJ (DO) DO 1 7
VEJ (D2) D2 17
VE,J (D4) D4 17
VEJ (DG) D6 17
VEJ(D~ DS 17
VEJ (DA) DA 17
VEJ (DC) DC 1 7
VEJ (DE) DE 17
VEJ (EO) EO 17
VEJ (E~ E2 17
VEJ (E4) E4 17
VEJ (E6) E6 1 7
VEJ (ES) ES 17
VEJ (EA) EA 17
VEJ (EC) EC 17
VEJ (EE) EE 1 7
VEJ (FO) FO 1 7
VEJ (F~ F2 17
VEJ (F4) F4 17
VEJ (F6) F6 1 7
Comment-Where, "ab" is the instruction code of VEJ

VHR-Conditional vector subroutine jump. When "H = o·:
the vector subroutine jump is performed. If "H = 1 ·:
the control proceeds to the next instruction. The Z flag
is reset after the jump. VHR uses FFOO through FFF6
as its vector address table and the values 00 through
F6 are valid for the immediate value.

Mnemonic
VHRi

Symbolic Operation
if H=O,
PH-(S-1), PL-(S)
(FFab)-PH, (FFab+ 1)-PL
S-2-S

Hex
Op-Code
CSi

Byte Cycle
2 S-21

Comment-if H = 1, no jump, ab = Hex digits in i

VHS-Conditional vector subroutine jump. When "H = 1 ·: it
performs the vector subroutine jump. If "H = o·: the
control proceeds to the next instruction. The Z flag is
reset after the jump. VHS uses FFOO through FFF6 as
its vector address table and the values 00 through F6
are valid for the immediate value.

Mnemonic
VHSi

Symbolic Operation
if H=1,
PH-(S-1), PL-(S)
(FFab)-PH , (FFab+ 1)-PL
S-2-S

Hex
Op-Code
C7i

Byte Cycle
2 S-21

Comment-if H =0, no jump; ab = Hex digits in i

VMJ-Vector subroutine jump. VMJ is the subroutine jump
that branches to a vectored address, of which the
high order byte is composed of "FF': and low order
byte is composed of the immediate value i. Note that
the Z flag is reset after the vector jump, when VMJ is
executed. VMJ uses FFOO through FFF6 as its vector
address table, and the values 00 through F6 are valid
for the immediate value.

Mnemonic Symbolic Operation
VMJ i PL-(S), S- 1-S

PH-(S), S-1-S
(FF ab)- PH
(FFab+ 1)-PL

Comments-ab = Hex digits in i

Hex
Op-Code Byte Cycle
CD i 2 20

VVS-Conditional vector subroutine jump. When "V = 1 ·; it
performs the vector subroutine jump. If "V = O',' the
control proceeds to the next instruction. The Z flag is
reset after the jump. VVS uses FFOO through FFF6 as

its vector address table and the values 00 through F6
are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VVS i if V = 1, CF i 2 8-21

PH-(S-1), PL--(S)
(FFab)-PH, (FFab+ 1)-PL
S-2-S

Comment-if V=O, no jump; ab Hex digits in i

VZR-Conditional vector subroutine jump. When "Z = o·: the
vector subroutine jump is performed. If "Z = 1 ·: the
control proceeds to the next instruction. The Z flag is
reset after the jump. VZR uses FFOO through FFF6 as
its vector address table and the values 00 through F6
are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VZR i if Z=O, C9 i 2 8-21

PH-(S-1), PL-(S)
(FFab)-PH, (FFab+ 1) .. -PL
S-2-S

Comment-if Z= 1, no jump; ab = Hex digits in i

VZS-Conditional vector subroutine jump. When "Z = 1 ·: it
performs the vector subroutine jump. If "Z = o·: the
control proceeds to the next instruction. The Z flag is
reset after the jump. VZS uses FFOO through FFF6 as
its vector address table, and the values 00 through F6
are valid for the immediate value.

Mnemonic
vzs i

Symbolic Operation
if Z=1,
PH-(S-1), PL-(S)
(FFab)-PH, (FFab+ 1)-PL
S-2-S

Hex
Op-Code
CBi

Byte Cycle
2 8-21

Comment-if Z = 0, no jump; ab = Hex digits in i

RETURNS

RTl--Retum instruction from the interrupt subroutine to the
main routine. All flags are subject to change.

Mnemonic
RT!

Symbolic Operation
(S+1)-PH,
(S+2)-PL,
(S+3)-T,
S+3-S

Hex
Op-Code Byte Cycle
.8A 1 14

RTN-Return instruction from a subroutine to the calling
routine. RTN causes no changes in the flags.

Mnemonic
RTN

TIMER

Symbolic Operation
(S+1)-PH,
(S+2)-PL,
S+2-S

Hex
Op-Code Byte Cycle
9A 1 11

The timer is composed of a 9-bit polynomial counter and
the time duration can be set using the AMO and AM 1 instruc
tions. This counter is in operation at all times, so it needs to be
set to 000 (Hex) before being used. A timer interrupt request
can be generated when the content of the counter is 1 FF
(Hex), if Interrupt Enable IE is on.

When a timer interrupt occurs, interrupt processing be
gins at the address specified in addresses FFFA and FFFB.

When a 4MHz crystal oscillator is used, the clock
produces a oF of 31.25KHz with a cycle of 32 microseconds.
In other words, the timer counter is incremented once every
32 microseconds.

_cXLO~Divider
..- OS
c::::::J 4MHzMTr°T,eSF

LXL1

2 1 500 250 125 62.5 31.25
MHz MHz KHz KHz KHz KHz KHz

!§) cm ~ cfu cm ~ dD m
@J (fl] (];] tii3 li1l ~ @11 tiJ ~ fiil II D D D m
(fil L!il C2J • fiiil 11 fi'B MiJ a a u 8 m
~•m3•••• c!Jaaall
~liEI• ctJmama

National Computer
Camp

National Computer Camp (NCC), which is believed to be
the first computer camp in this country, is powering up for
another series of computer camps for kids from ages nine to
eighteen.

Campers at National Computer Camps learn to program

the computer through a hands-on approach along with am
ple time on, and access to, the computer--two to three
campers per computer. In the process, the campers come to
understand the potential as well as the limitations involved in
using computers.

1983 will be the sixth season of NCC, and for the
first time, the camp will be held in three separate locations:
Simsbury, CT; Atlanta, GA; and St. Louis, MO.

The sessions will be:

July 3-July 8
July 10-July 15
July 17-July 22
July 24-July 29
July 31-August 5

National Computer Camps
P.O. Box 585
Orange, CT 06477
1-203-795-9667

FLASH-Fourth Location Now Available
Dr. Zabinski has just informed us of a fourth National

Computer Camp location for this summer. The fourth camp
will be at Linfield College in McMinnville, Oregon. For further
information, contact NCC at the address and phone number
shown above. ..ID

TRS-80 Microcomputer News, May 1983 35

Pocket Computer

PC-2 Assembly Language-Part 4
By Bruce Elliott

This is the fourth in a series of articles which describe the Hex

MPU (microprocessor unit) used in the Radio Shack PC-2 Mnemonic Symbolic Operation Op-Code Byte

pocket computer. It is our intention to include specific infor- ADI #(X),i #(X) + i --+ #(X) FD 4F i 3

mation about the 8-bit CMOS microprocessor, the machine ADI #(Y) ,i #(Y) + i --+ #(Y) FD 5F i 3

code used by the microprocessor, as well as information ADI (ab),i (ab) + i --+ (ab) EF ab i 4

about the PC-2 memory map, and certain ROM calls which ADI (U),i (U) + i--+ (U) 6F i 2

are available. Please realize that much of what we are talking
ADI (X),i (X) + i--+ (X) 4F i 2
ADI (Y),i (Y) + i--+ (Y) 5F i 2

about refers to the .overall capabilities of the MPU, and does ADI A,i A+i+C--+A 83 i 2
riot imply that all of these things can be done with a PC-2.

The information provided in these articles is the only ADR U UL + A--+ UL FD EA 2
information which is available. We will try to clarify any ambi- ADR X XL + A --+ XL FD CA 2

guities which occur in the articles, but can not reply toques- ADR Y YL +A--+ YL FD DA 2

tions outside the scope of these articles. Further, published
copies of TRS-80 Microcomputer News are the only source A

of this information, and we will not be maintaining back is- AEX

~
F1

sues. Parts One, Two and Three of this series were published
in the March, April, and May 1983 issues, respectively.

The first three articles described the MPU used in the
PC-2, including information on the MPU's structure and its
machine language. We also gave you details on the AMO A --+ Timer (0-7) FD CE 2
PC-2 memory map and the locations of ROM routines which O--+ Timer (8)

are available. In this article we will present two lists which we AM1 A --+ Timer (0-7) FD DE 2

hope will make finding a particular machine language in- 1--+ Timer (8)

struction easier. We will also provide some information on
AND #(ab) A/\ #(ab) --+ A FD A9 ab how you might begin to use the information we have 4

published. AND #(U) A/\ #(U) --+ A FD 29 2
AND #(X) A/\ #(X) --+ A FD 09 2

ALPHABETIC OP-CODE LIST
AND #(Y) A/\ #(Y) --+ A FD 19 2
AND (ab) A/\ (ab) --+ A A9 ab 3

The following list presents the PC-2 machine language AND (U) A/\ (U) --+ A 29
instructions alphabetically along with each code's symbolic AND (X) A/\ (X) --+ A 09

operation and its hex op-code, and byte count. AND (Y) A /\ (Y) --+ A 19

Parts two and three of this series presented the same
information arranged. according to function and provided ANI #(ab),i #(ab) /\ i --+ #(ab) FD E9 ab i 5

details on how the instructions work. ANI #(U),i #(U) /\ i --+ #(U) FD 69 i 3
ANI #(X),i #(X) /\ i --+ #(X) FD 49 i 3

Hex ANI #(Y),i #(Y) /\ i --+ #(Y) FD 59 i 3
Mnemonic Symbolic Operation Op-Code Byte ANI (ab) ,i (ab) /\ i --+ (ab) E9 ab i 4

ADC #(ab) A + #(ab) + C --+ A FD A3 ab 4 ANI (U),i (U) /\ i--+ (U) 69 i 2

ADC #(U) A+ #(U) + C--+ A FD 23 2 ANI (X),i (X) /\ i--+ (X) 49 i 2

ADC #(X) A+ #(X) + C--+ A FD 03 2 ANI (Y),i (Y) /\ i --+ (Y) 59 i 2

ADC #(Y) A+ #(Y) + C--+ A FD 13 2 ANI A,i A/\ i--+ A 89 i 2

ADC (ab) A + (ab) + C--+ A A3 ab 3

ADC (U) A+ (U) + C--+ A 23 ATP A --+ Data Bus FD CC 2

ADC (X) A + (X) + C--+ A 03

ADC (Y) A+ (Y) + C--+ A 13 ATT A--+T FD EC 2

ADC UH A+ UH + C--+ A A2

ADC UL A + UL + C--+ A 22 BCH+ i p + i--+ p BE i 2

ADC XH A+ XH + C--+ A 82 BCH -i p - i--+ p 9E i 2

ADC XL A + XL + C --+ A 02

ADC YH A+ YH + C--+ A 92 BCR+ i if c = 0' p + i --+ p 81 i 2

AOC YL A+ YL + C--+ A 12 BCR- i if c = 0' p - i --+ p 91 i 2

ADI #(ab) ,i #(ab) + i --+ #(ab) FDEFabi 5 BCS+ i if c = 1 ' p + i --+ p 83 i 2

ADI #(U),i #(U) + i --+ #(U) FD 6F i 3 BCS- i if c = 1 ' p - i --+ p 93 i 2

TRS-80 Microcomputer News, September 1983 21

Hex Hex
Mnemonic Symbolic Operation Op-Code Byte Mnemonic Symbolic Operation Op-Code Byte
BHR+ i if H = 0, P + i ~ P S5 i 2 DCA (U) A+ (U) + C - A AC 1
BHR- i if H = 0, P - i - P 95 i 2 DCA (X) A+ (X) + C - A SC

DCA (Y) A+ (Y) + C--:+ A 9C
BHS+ i if H = 1 , P + i - P S7 i 2
BHS- i if H = 1 , P - i - P 97 i 2 DCS #(U) A - #(U) - C - A FD 2C 2

DCS #(X) A - #(X) - C - A FD OC 2
Bil #(ab),i #(ab) f\ i - Z FDEDabi 5 DCS #(Y) A - #(Y) - C - A FD 1C 2
Bil #(U),i #(U) Ai - Z FD 6D i 3 DCS (U) A - (U) C-A 2C
Bil #(X),i #(X) Ai - Z FD 4D i 3 DCS (X) A - (X) - C - A oc
Bil #(Y),i #(Y) Ai - Z FD 5D i 3 DCS (Y) A - (Y) - C ~A 1C
Bil (ab),i (ab) f\ i - Z ED ab i 4
Bil (U),i (U) Ai - Z 6D i 2 DEC A A-1-A DF
Bil (X),i (X) f\ i - Z 4D i 2 DEC U U-1-U 66 1
Bil (Y),i (Y) f\ i - Z 5D i 2 DEC UH UH - 1 ~UH FD 62 2
Bil A,i AAi-Z BFi 2 DEC UL UL - 1 ~UL 62

DEC X X-1-X 46 1
BIT #(ab) A f\ #(ab)~ Z FD AF ab 4 DEC XH XH 1 - XH FD 42 2
BIT #(U) A A #(U) ~ Z FD 2F 2 DEC XL XL - 1 - XL 42
BIT #(X) A f\ #(X) - Z FD OF 2 DEC Y Y-1~Y 56 1
BIT #(Y) A f\ #(Y) - Z FD 1F 2 DEC YH YH - 1 ~ YH FD 52 2
BIT (ab) A f\ (ab)~ Z AF ab 3 DEC YL YL - 1 ~ YL 52
BIT (U) A A (U) - Z 2F
BIT (X) A f\ (X) - Z OF

~
BIT (Y) A f\ (Y) - Z 1F DRL #(X) FD D7 2

BVR+ i if v = 0' p + i - p SD i 2
DRL (X) D7

BVR i if V=O, P i ~ p 9D i 2
A (X) or #(X)

BVS+ i if v = 1 ' p + i - p 8F i 2
BVS- i if v = 1 ' p - i ~ p 9F i 2

~
DRR #(X) FD D3 2

BZR+ i if z = 0' p + i ~ p S9 i 2 DRR (X) D3

BZR- i if z = 0' p - i - p 99 i 2
A (X) or #(X)

BZS+ i if z = 1 ' p + i ~ p SB i 2
BZS- i if z = 1 ' p - i - p 9B i 2 EAi i A® i ~A BD i 2

CDV 0 ~Divider FD SE 2 EOR #(ab) A® #(ab) - A FD AD ab 4
EOR #(U) A® #(U) - A FD 2D 2

CIN A - (X), X+1 ~ X F7 EOR #(X) A® #(X) - A FD OD 2
EOR #(Y) A® #(Y) - A FD 1D 2

CPA #(ab) A #(ab) FD A7 ab 4 EOR (ab) A® (ab)~ A AD ab 3

CPA #(U) A #(U) FD 27 2 EOR (U) A® (U) - A 2D

CPA #(X) A - #(X) FD 07 2 EOR (X) A® (X) - A OD

CPA #(Y) A - #(Y) FD 17 2 EOR (Y) A® (Y) ~A 1D
CPA (ab) A - (ab) A7 ab 3
CPA (U) A - (U) 27 HLT FD B1 2

CPA (X) A - (X) 07
CPA (Y) A - (Y) 17 INC A A+1-A DD

CPA UH A UH A6 INC U u+1~u 64 1

CPA UL A UL 26 INC UH UH + 1 - UH FD 60 2
CPA XH A - XH S6 INC UL UL+ 1 ~UL 60

CPA XL A - XL 06 INC X x+1-x 44 1

CPA YH A - YH 96 INC XH XH + 1 ~ XH FD 40 2
CPA YL A - YL 16 INC XL XL+ 1 - XL 40

INC Y Y+1-Y 54 1
CPI A,i A - i B7 i 2 INC YH YH + 1 ~ YH FD 50 2
CPI UH,i UH - i 6C i 2 INC YL YL + 1 ~ YL 50

CPI UL,i UL - i 6E i 2
CPI XH,i XH - i 4C i 2 ITA IN - A FD BA 2

CPI XL,i XL - i 4E i 2
CPI YH,i YH - i 5C i 2 JMP i,j i - PH, j - PL BA i j 3
CPI YL,i YL 5E i 2

LDA #(ab) #(ab) - A FD A5 ab 4

DCA #(U) A+ #(U) + C - A FD AC 2 LDA #(U) #(U) - A FD 25 2
DCA #(X) A+ #(X) + C - A FD SC 2 LDA #(X) #(X) - A FD 05 2
DCA #(Y) A+ #(Y) + C - A FD 9C 2 LDA #(Y) #(Y) - A FD 15 2

22 TRS~SO Microcomputer News, September 19S3

Hex Hex
Mnemonic Symbolic Operation Op-Code Byte Mnemonic Symbolic Operation Op-Code Byte

LOA (ab) (ab) --> A AS ab 3 PSH A A --> (S), S - 1 ---> S FD C8 2
LOA (U) (U)---> A 2S PSH U UL---> (S),
LOA (X) (X)--> A OS UH --> (S - 1), S - 2 ---. S FD A8 2
LOA (Y) (Y)---> A 1S PSH X XL---> (S) ,
LOA UH UH--> A A4 XH---> (S - 1), S-2 -->S FD 88 2
LOA UL UL--> A 24 PSH Y YL--> (S),
LOA XH XH--> A 84 YH--> (S-1), S-2 -->S FD 98 2
LOA XL XL--> A 04
LOA YH YH--> A 94 RDP O --> Display FD CO 2
LOA YL YL--> A 14

REC 0--> c F9
LOE U (U) ---> A, U - 1 ---> U 67
LOE X (X) ---> A, X - 1 ---> X 47 RIE 0---> IE FD BE 2
LOE Y (Y) ---> A, Y - 1 ---> Y S7

LOI A,i i---> A BS i 2
ROL 1-§-{G]J DB

LOI S,i,j i -+ SH, j --> SL AA ij 3
LOI UH,i i--> UH 68 i 2 A

LOI UL,i i--> UL 6A i 2
LOI XH,i i---> XH 48 i 2 L@Htj] LOI XL,i i--> XL 4A i 2 ROR 01
LOI YH,i i--> YH S8 i 2 A
LOI YL,i i--> YL SA i 2

RPU 0---> PU E3
LOX P p --> x FD S8 2
LOX S s --> x FD 48 2 RPV 0--> PV B8
LOX U u--> x FD 28 2
LOX X x ---> x FD 08 2 RTI (S + 1)--> PH , 8A
LOX Y y --> x FD 18 2 (S + 2)--> PL,

(S + 3) ---> T,
LIN U (U) ---> A, U + 1 --> U 6S s + 3---> s
LIN X (X) ---> A, X + 1 ---> X 4S
LIN Y (Y) --> A, Y + 1 --> Y SS RTN (S + 1)--> PH, 9A

(S + 2)---> PL,
LOP UL,i UL - 1 ---> UL 88 i 2 s + 2--> s

If borrow = 0, P - i --> P
SBC #(ab) A - #(ab) - C--> A FD A1 ab 4

NOP 38 SBC #(U) A - #(U) - C--> A FD 21 2
SBC #(X) A - #(X) - C--> A FD 01 2

OFF 0---> BF FD 4C 2 SBC #(Y) A - #(Y) -C--> A FD 11 2
SBC (ab) A - (ab) - C--> A A1 ab 3

ORA #(ab) Av #(ab)--> A FD AB ab 4 SBC (U) A - (U) - C--> A 21
ORA #(U) Av #(U)--> A FD 2B 2 SBC (X) A - (X) - C--> A 01
ORA #(X) Av #(X)--> A FD OB 2 SBC (Y) A - (Y) - C--> A 11
ORA #(Y) Av #(Y)--> A FD18 2 SBC UH A - UH - C--> A AO
ORA (ab) Av (ab)--> A AB ab 3 SBC UL A - UL - c--. A 20
ORA (U) Av (U)--> A 2B SBC XH A - XH - C--> A 80
ORA (X) Av (X)---> A OB SBC XL A - XL - C--> A 00
ORA (Y) Av (Y)--> A 18 SBC YH A - YH - C--> A 90

SBC YL A - YL - C--> A 10
ORI #(ab),i #(ab) v i --> #(ab) FDEBabi s
ORI #(U),i #(U) v i --> #(U) FD 6B i 3 SBI A, i A - i - C--> A B1 i 2

ORI #(X),i #(X) v i --> #(X) FD 4B i 3
A ---> (U) , U - 1 --> U 63

ORI #(Y),i #(Y) v i --> #(Y) FD SB i 3 SOE U

ORI (ab),i (ab) v i --> (ab) EB ab i 4 SOE X A --> (X), X - 1 --> X 43

ORI (U) ,i (U) vi--> (U) 6B i 2
SOE Y A --> (Y), Y - 1 --> Y S3

ORI (X) ,i (X) vi.,--+ (X) 4B i 2 SOP 1 ---> Display FD C1 2
ORI (Y),i (Y) vi--> (Y) SB i 2
ORI A,i Av i--> A BB i 2 SEC 1---> c FB

POP A (S + 1) --> A, S + 1 --> S FD 8A 2
0~..-0 POP U (S+1)--> UH, SHL 09

(S+2)--> UL,S+2--> S FD 2A 2 A
POP X (S+1)--> XH,

(S+2)--> XL,S+2--> S FD OA 2 o~~ POP Y (S+1)--> YH , SHR OS

(S+2)--> YL,S+2--> S FD 1A 2 A

TRS-80 Microcomputer News, September 1983 23

Mnemonic

SIE

SIN U
SIN X
SIN Y

SJP

SPU

SPV

STA #(ab)
STA #(U)
STA #(X)
STA #(Y)
STA (ab)
STA(U)
STA (X)
STA (Y)
STA UH
STA UL
STAXH
STA XL
STA YH
STA YL

STX P
STX S
STX U
STX X
STX Y

TIN

TTA

VCRi

VCSi

VEJ (CO)
VEJ (C2)
VEJ (C4)
VEJ (C6)
VE,J (C8)
VEJ (CA)
VEJ (CC)
VEJ (CE)
VEJ (DO)
VEJ (D2)
VEJ (04)
VEJ (D6)
VEJ (D8)
VEJ (DA)
VE,J (DC)

Symbolic Operation

1 -+ IE

A -+ (U), U + 1 -+ U
A -+ (X), X + 1 -+ X
A -+ (Y), Y + 1 -+ Y

PL -+ (S), PH -+ (S - 1),
S - 2 -+ S, i -+ PH,
j-+ PL

1 -+PU

1 -+ PV

A-+ #(ab)
A-+ #(U)
A-+ #(X)
A-+ #(Y)
A -+ (ab)
A-+ (U)
A-+ (X)
A-+ (Y)
A-+ UH
A-+ UL
A-+ XH
A -+ XL
A-+ YH
A -+ YL

x-+ p
x-+ s
x-+ u
x-+ x
x-+ y

(X)-+ (Y),
X + 1 -+ X, Y + 1 -+ Y

if C=O,
PH-+ (S-1), PL-+ (S)
(FFab)-+ PH
(FFab+1)-+ PL
S - 2 -+S

if C=1,
PH-+ (S-1), PL-+ (S)
(FFab) -+ PH
(FFab+ 1) -+ PL
s-2-~s

PL -+ (S), S - 1 -~ S
PH -+ (S), S- 1 -+ S
(FFab)-+ PH
(FFab+ 1)-+ PL

Hex
Op-Code

FD 81

61
41
51

BE i j

E1

A8

FD AE ab
FD 2E
FD OE
FD 1E
AE ab
2E
OE
1E
28
2A
08
OA
18
1A

FD SE
FD 4E
FD 6A
FD 4A
FD SA

FS

FD AA

C1 i

C3 i

co
C2
C4
C6
C8
CA
cc
CE
DO
D2
D4
D6
D8
DA
DC

24 TRS-80 Microcomputer News, September 1983

Byte

2

3

4
2
2
2
3

2
2
2
2
2

2

2

2

Mnemonic

VEJ (DE)
VE,J (EO)
VEJ (E2)
VEJ (E4)
VEJ (E6)
VE,J (E8)
VE,J (EA)
VEJ (EC)
VEJ (EE)
VE,J (FO)
VEJ (F2)
VEJ (F4)
VEJ (F6)

VHRi

VHSi

VMJi

vvs i

VZR i

vzs i

Symbolic Operation

if H=O,
PH-+ (S-1), PL-+ (S)
(FFab)-+ PH
(FFab + 1) -+ PL
s - 2 -+ s

if H=1,
PH-+ (S-1), PL-+ (S)
(FFab) -+ PH
(FFab+ 1)-+ PL
S-2-+S

PL -+ (S), S - 1 -+ S
PH -+ (S), S-1 -+ S
(FFab) -+ PH
(FFab + 1) -+ PL

if V=1,
PH -+ (S-1), PL -+ (S)
(FFab) -+ PH
(FFab+ 1)-+ PL
S-2-+S

if Z=O,
PH -+ (S-1), PL-+(S)
(FFab) -+PH
(FFab + 1) -+PL
S - 2 -+S

if Z=1,
PH -+ (S-1), PL-+(S)
(FFab) -+PH
(FFab+ 1) -+PL
S - 2 -+S

NUMERIC OP-CODE LIST

Hex
Op-Code

DE
EO
E2
E4
E6
E8
EA
EC
EE
FO
F2
F4
F6

CSi

C7i

CDi

CFi

C9i

CBi

Byte

1

2

2

2

2

2

2

The following list presents the PC-2 machine language
instructions numerically and includes the hex and decimal
values for the op-codes. Numeric values which are missing
from the list have no valid op-code that we are aware of.

Hex
Value

10
11
12
13

1
19
1A
18

38

44
4S
46
47

4C
40
4E
4F

Decimal
Value

16
17
18
19

S6

68
69
70
71

76
Tl
78
79

92 i

SBC YL
SBC (Y)
ADC YL
ADC (Y)

NOP

INC X
LIN X
DEC X
LOE X

CPI XH,i
Bil (X),i
CPI XL,i
ADI (X), i

INC Y
LIN Y
DEC Y
LOE Y

CPI YH, i

Hex
Value

SD i
SE i
SF i

84
8S i
86
87 i

8C
80 i
8E i
8F i

A
AD ab
AE ab
AF ab

Decimal
Value

93 i
94 i
9S i

100
101
102
103

132
133 i
134
13S i

140
141 i
142 i
143 i

Opcode

Bil (Y),i
CPI YL,i
ADI (Y),i

INC U
LIN U
DEC U
LOE U

c I , I
Bil (U) ,i
CPI UL,i
ADI (U),i

LOA XH
BHR + i
CPA XH
BHS+ i

DCA (X)
BVR+ i
BCH+ i
BVS+ i

L
BHR-i
CPA YH
BHS- i

- i
BCH-i
BVS-i

EOR (ab)
STA (ab)
BIT (ab)

Hex
Value

co
C1 i
C2
C3 i

EO
E1
E2
E3

EB ab i
EC
ED a b i

FO
F1
F2
F4

FB

Decimal
Value

192
193 i
194
19S i

224
22S
226
227

4
235 ab i
236
237 ab i

240
241
242
244

2S1

2S3 29

Opcode

VEJ (CO)
VCR i
VEJ (C2)
VCS i

VEJ (EO)
SPU
VEJ (E2)
RPU

-)
ORI (ab) ,i
VEJ (EC)
Bil (ab),i

VEJ (FO)
AEX
VEJ (F2)
VEJ (F4)

SEC

)
EOR #(Y)

TRS-80 Microcomputer News, September 1983 25

Hex Decimal Hex Decimal Hex Decimal
Value Value Opcode Value Value Opcode Value Value Opcode

FD 1E 253 30 STA #(Y) FD A9 ab 253 169 ab AND #(ab)
FD 1F 253 31 BIT #(Y) FD AA 253 170 TTA

FD AB ab 253171ab ORA #(ab)
FD AC 253 172 DCA #(U)

FD 5F i 253 95 i ADI #(Y) ,i

AND #(U) FD B1 253 177 HLT
POP U FD BA 253 186 ITA
ORA #(U) FD BE 253 190 RIE

ADI #(X),i FD A1 ab
FD A3 ab

253 161 ab
253 163 ab

FD E9 ab i
FD EA
FDEBabi
FD EC

253 233 ab i
253 234
253 235 ab i
253 236

ANI #(ab),i
ADR U
ORI #(ab), i
ATT

HOW DO I USE ALL THIS?
The primary advantage of machine language over

BASIC is speed . Your PC-2 has a very complete BASIC so
there really isn't a lot of reason to program in machine lan
guage unless you are looking for a speed advantage. Let's
look at a couple of programs which will demonstrate how fast
machine language is compared to BASIC.

What we will do is write a BASIC program which will
reverse each graphic point on the PC-2's LCD display. Any
point which is black (on) will be turned white (off) and any
point which is off will be turned on . We will then show you a
similar program in machine language. This should let you
compare the speeds of the two languages.

First the BASIC program:

200 WAIT 0
210 CLS
220 GCURSOR 3

: REM SHIFT PRINTING RIGHT SLIGHTLY
230 PRINT "Microcomputer News"
240 FOR I =0 TO 155

: REM GRAPHIC COLUMNS
250 GCURSOR I

: REM SET GRAPHIC CURSOR
260 A=POINT I

: REM STORE COLUMN VALUE
27f/J B=0

: REM NEW COLUMN - ALL POINTS OFF
280 FOR J=6 TO 0 STEP -1

: REM EXAMINE DOTS
290 C=INT(A/2-J)

: POINT ON OR OFF (1 OR 0)
300 IF C=0 LET B=B+2 - J

: REM TURN ON IF OFF
310 A=A--C*2-J

: REM GET READY FOR NEXT POINT
320 NEXT J

: REM DO NEXT DOT
330 GPRINT B;

: REM PRINT REVERSED COLUMN

26 TRS-80 Microcomputer News, September 1983

340 NEXT I
: REM DO NEXT COLUMN

350 GOTO 350

To use the program, enter it into your PC-2. Change line
230 to print what ever you wish on the L.CD. When you run the
program, the LCD will be reversed one column at a time from
left to right.

Lets look at a machine language program to do the same
thing :

H WAIT 0
20 CLS
30 GCURSOR 3
40 PRINT "TRS-80 PC-2"
50 POKE 18409, 72, 118, 74, 0, 5, 189, 255, 65, 78,

78, 153, 8
60 POKE 18421, 76, 119 , 139, 6, 72, 119, 74, 0, 158,

18, 154
80 CALL 18409
90 NEXT I

Looks kind of like a BASIC program doesn't it?
With the PC-2, you will normally use BASIC as a "vehi

cle" for getting the machine language routine into the com
puter and then executing it.

Lines ·10-40 of this second program look a lot like the first
four lines of our first program, and they do the same things
housekeeping and getting something on the LCD so the
program can reverse it.

Lines 50 and 60 contain the actual machine code for our
program. POKE is a PC-2 command which tells the computer
to "poke" values into memory. The first value following POKE
(18409 and 18421) tells the computer where in memory to
start poking and the remaining values are the values to be
POKEd into successive memory locations.

The CALL statement in line 80 tells the PC-2 to "jump" to
the memory location specified (18409) and begin executing
the program it finds there. If you have the computer jump to a

memory location and the location does not begin a valid
program, your PC-2 may freeze or perform in an unpredict
able manner.

The GOTO 100 statement in line 100 "freezes " the LCD
and lets you see the result of the reversal.

If you have entered and RUN the second program, you
should have noticed that your message was printed on the
display and then, almost instantly, the LCD was reversed.
Quite a bit faster than BASIC's many seconds to reverse the
screen.

This second program was copied from pages 62 and 63
of your PC.·2 Owner's Manual. Add lines 70 and 90 from
those pages to see multiple reversals. I numbered the first
program in so that both programs can be in memory at the
same time for comparisons of their speed.

DISASSEMBLY
You may be curious about how the machine code in lines

50 and 60 are able to reverse the display. To find out, we need
to "disassemble" the mach ine code. The term "d isassem
ble" means to take the hexadecimal (hex) or decimal values
which represent a machine code program and to translate
those values into more recognizable assembly language op
eration codes (op-codes.) Once you have the op-codes you
will be better able to understand the logic that makes the
program work.

Here is how I went about disassembling the machine
code from lines 50 and 60:

1. Find the first value which represents an instruction to
the computer. This is the value 72 in line 50. We know
that this is a decimal value because a hex value (on the
PC-2) is preceded by an '&'.

2. Locate the value 72 in the numeric op-code list. Re
member that the decimal values are in the second
column . The listing looks like this:

Hex Value Decimal Value

48 i 72 i

The Op-code is LOI XH, i.

Op-Code

LOI XH ,i

3. The 'i ' in the op-code tells us that th is instruction
requires another value to be complete.

4. A quick check in the alphabetic listing gives this listing
for LOI XH, i:

Mnemonic Symbolic Operation
Hex
Op-Code Byte

LOI XH, i i -> XH 48 i 2

Mnemonic is just another word for op-code. The sym
bolic operation tells us that the value ' i' is stored into 'XH'
(the high 8-bits of the 16-bit X register) . We already knew
the Hex Op-Code. The' Byte' information tells us that this
instruction requires two bytes (two values.)
Since this command requires a second value, we go
back to line 50 in the BASIC program and get the next
value (118).

5. I now have two values (72 118) which represent an
instruction to the computer. The instruction translates
as: Load the high portion of the X register with the
decimal value 118.

6. I would now go back to line 50, get the next available
value (7 4) and continue with steps 2-5 until I had used
all of the available values in lines 50 and 60.

The result of the disassembly is:
Decimal
Values

72 118
74 0
5
189 255
65
78 78
153 8
76 119
139 6
72 119
74 0
158 18
154

Hex Op-Code
Codes Translation

48 76 LOI XH, 76H
4A 00 LOI XL, OOH
05 LOA (X)
80 FF EAi FFH
41 SIN X
4E 4E CPI XL, 4EH
99 08 .8ZR - 08H
4C 77 CPI XH, 77H
88 06 8ZS + 06H
48 77 LOI XH , 77H
4A 00 LOI XL, OOH
9E 12 BCH-1 2H
9A RTN

You should have noticed that I included the hex equiva
lents of the decimal values as I went along, and noticed that I
used the hex values in my disassembled list (with an 'H ' after
those values for clarity.) The reason for doing this is that it will
make comparisons with the PC-2 memory map a little easier.
Also, most assembly language listings you read wil l use hex,
so now is the time to start getting used to hex codes (if you
aren 't already.)

The simplest way of getting the hex codes is to get them
from the numerical listing of op-codes that was presented
earlier in this article.

Great, you say, but what do I do with all of this stuff? We
wi ll look at each line of the listing and see if we can make
sense of it. To help the process, I am going to give each line a
number (starting with 100 and incrementing by 10) to make
referring to the lines a little easier.
Line Decimal Hex Op-Code
100 72 118 48 76 LOI XH, 76H
110 74 0 4A 00 LOI XL, OOH
120 5 05 LOA (X)
130 189 255 BO FF EAi FFH
140 65 41 SIN X
150 78 78 4E 4E CPI XL, 4EH
160 153 8 99 08 BZR-08H
170 76 119 4C 77 CPI XH, 77H
180 139 6 88 06 8ZS+ 06H
190 72 119 48 77 LOI XH , 77H
200 74 0 4A 00 LOI XL, OOH
210 158 18 9E 12 8CH-12H
220 154 9A RTN

Lines 100 and 110 load the X register with the hex value
7600.

Line 120 then tells the computer to load the A register with the
value stored in the memory location that the X register is
pointing to (7600). A quick glance at the PC-2 memory
map (March MCN, pg. 26) shows us that the memory
locations beginning at 7600H and continuing to 764DH
are part of the PC-2's LCD display. What the computer
has done is to look at the first byte of LCD memory
(which corresponds to the first column of dots in the
main LCD display area) and then place a copy of the
value in that location into the M PU 's A reg ister.

Line 130 tells the computer to take the value in the A register
and exclusive OR (XOR) it with the immediate value
FFH . The bit pattern for FFH is: 1111 1111 .

TRS-80 Microcomputer News, September 1983 27

The exclusive OR operation compares each bit of the
display value (stored in A) with a one bit from the FFH (a
solid black, all on, column). If both bits are ones the
computer stores a zero (0). If one bit is a one and the
other is a zero, the computer stores a one. The net result
is that after the EAi (XOR) operation, the A register
contains a reversed copy of the original display byte.

· Line 140 contains the one byte instruction SIN X. This single
instruction tells the computer to take the value which is
currently in the A register (our reversed column image)
and store that value in the memory location pointed to
by the X register.

If you remember (the computer does), this is currently
the first byte of LCD RAM. Once the value from A has
been stored, the computer will add one to the value
currently in the X register.

Let's pause a moment and see what has happened. With
only eight bytes of memory we have told the computer where
the first column of LCD memory is (7600H), we have made a
copy of that column, reversed the copy, stored the result back
into the first column of LCD memory (7600H) and we have
incremented our counter (the X register) so that it now points
to the second column of the LCD. No wonder machine
language is so fast!

Line 150 tells the computer to compare the lower 8-bits of the
X register with the value 4EH. The computer will set its
'flags' based on whether the value in XL is 4EH or not.

Recall that the X register is pointing to LCD memory. A
glance back to the PC-2 memory map shows us that if X
contains 764EH, it is pointing just past the end (764DH)
of LCD display sections 1 and 3.

Line 160 instructs the computer to examine the flags which
were set by the CPI instruction in line 150. If the Z flag is
zero (Z = 0), meaning that XL did NOT contain the value
4EH, then the computer is instructed to count back
wards eight bytes and continue executing the program
from that point. If Z = ·1 the computer will continue to the
instruction in line 170.

To count back eight bytes the way the computer will do it,
we have to understand that the program counter (which is
what will be reduced by eight) is already pointing to the first
byte of the instruction in line ·170. Count back eight from that
point. You should have stopped on the 05H in line 120. The
computer would continue executing instructions beginning
with line 120.

What the programmer did was to create a loop. The
purpose of the loop is to have the computer move one byte at
a time through the memory of LCD chips 1 and 3 (7600H -
764DH) reversing each byte in memory as the computer
comes to them.

Line 170 tells the computer that if the value in XL was 4EH
(from the test and compare in lines 150 and 160), then
test the value in XH (the upper 8-bits of X) to see if a 77H

28 TRS-80 Microcomputer News, September 1983

is present. The first time the computer executes line 170
the value in XH will be a 76H (put there in line 100.)

Line 180 tells the computer to move its program counter
forward six bytes if the value in XH WAS a 77H. Remem
bering that the program counter is currently pointing to
the first byte in line 190, adding six would move the
pointer forward to the single byte in line 220.

Line 190 is executed only if the value XH was not a 77H.

Line 200 will put a OOH into XL. A quick glance at the memory
map shows us that 7700H if the first byte of LCD display
memory for chips 2 and 4.

Line 21 O tells the computer to subtract 12H (18 decimal) from
its current program counter value. Since the program
counter would be pointing at the 9AH in line 220, mov
ing back 18 decimal would make the program counter
point to line 120 again.

We already know that this will cause the computer to
move through this new section of LCD memory (start
ing at 7700H this time) until the value in XL reaches
4EH. When XL reaches 4EH (this would be the second
time), the computer would find 77H in XH (line 170) and
the program counter would be moved forward to point
at line 220 (line 180).

Line 220 is very important in any program which began by
BASIC executing a CALL command. If you will look
back to the BASIC program which loaded the machine
code into memory, you will find the CALL command in
line 80. The purpose of the RTN instruction in line 220 of
our machine language program is to return control of
the computer to BASIC and the program which con
tained the CALL command. If you forget to do this, you
may have to push the ALL RESET button on the back of
the PC-2 to regain control of the computer. .ti

Pocket Computer

PC-2 Assembly Language-Part 5
By Bruce Elliott

This is the fifth in a series of articles which describe the
MPU (microprocessor unit) used in the Radio Shack PC-2
pocket computer. It is our intention to include specific infor
mation about the 8-bit CMOS microprocessor, the machine
code used by the microprocessor, as well as information
about the PC-2 memory map, and certain ROM calls which
are available. Please realize that much of what we are talking
about refers to the overall capabilities of the MPU, and does
not imply that all of these things can be done with a PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi
guities which occur in the articles, but cannot reply to ques
tions outside the scope of these articles. Further, published
copies of TRS-80 Microcomputer News are the only source of
this information, and we will not be maintaining back issues.
Parts One, Two, Three and Four of this series were published
in the March, April, May, and September 1983 issues,
respectively.

The first three articles described the MPU used in the
PC-2, including information on the MPU's structure and its
machine language. We also gave you details on the
PC-2 memory map and the locations of ROM routines which
are available. In the fourth article we presented two lists to
make finding a particular machine language instruction eas
ier. We also provided some information on how you might
begin to use the information we have published. In this fifth
article we want to present information on how to create your
own machine language routines, and begin describing how
to use the PC-2 ROM calls which are available.

CREATING YOUR OWN PROGRAMS
Last month we looked at an existing machine language

program and described a procedure (disassembly) for deter
mining how the program did what it was supposed to do. This
month I want to define a program and then describe the
procedure for creating a workable program that fits the defini
tion. To make things simple, the program we are going to
design will do only one thing--display on the LCD the key
you press on the keyboard. I know that this program may
sound silly. After all, doesn't the PC-2 automatically display
the key you press? The answer is no, it doesn't. Try using the
INKEY$ command. With INKEY$, if you want the character
displayed you must display it yourself.

What we are really doing is designing a program which
will accept characters from the PC-2 keyboard and display
them on the LCD. This program should show you how to do
three important things in assembly language: first, how to get
information from the keyboard into the computer; second,
how to take information that is in the computer and display
it on the LCD; and third, how to use the PC-2's ROM
subroutines.

In Part 1 of this series (March, 1983, pg. 26) we
published a PC-2 memory map. It is in this section of PC-2
memory that we find ROM subroutines.

WHY DO ROM SUBROUTINES EXIST?
In general, any computer consists of similar basic parts.

To function, a computer must have a processing unit, input
and output functions, working memory to store temporary
results, and some sort of control mechanism or program.

In the PC-2, the processing unit is the MPU which we
have been describing in this series. The input function is
handled primarily by the keyboard, and the output function is
handled primarily by the LCD. The working memory is RAM
(Random Access Memory), and the control mechanism is in
the form of programs stored in ROM (Read Only Memory).

In order to make the PC-2 behave so that you can use it,
the manufacturer wrote an operating system to control the
various functions of the computer. Part of this operating sys
tem is instructions which control the keyboard, the LCD, and
BASIC. This is where ROM subroutines come from. To func
tion properly, the PC-2 has to have a routine which looks at
the keyboard and stores any key which may be pressed.
Likewise, there has to be a routine somewhere which takes a
character and displays it on the LCD. The PC-2 memory map
tells us where some of these routines are located, and we
will use th is information to create our machine language
program.

IS THIS INFORMATION AVAILABLE ON OTHER
COMPUTERS?

Radio Shack has received permission from the original
manufacturer of the PC-2 to disclose the information which
we are presenting in this series of articles. The information is
fixed, and we do not expect it to change.

If you happen to own a different TRS-80 you may have
tried to get similar information for that computer and you were
told "I am sorry, but we cannot provide you with that informa
tion." Why? Well, there are two major reasons. The first and
largest reason is that most computers are evolving products.
As a computer evolves, the contents of its operating systems
also change. If we give you information about where a partic
ular routine is located in the first version of a program or
operating system, you are going to expect that information to ·
be true in the second version of that program or operating
system also. With few exceptions, every change of a machine
language program such as an operating system means a
relocation of ALL of the contents of that program.

Because the contents of programs are subject to change
with each revision, what Radio Shack typically does is to
publish certain "published entry points." These published
entry points won't normally change, even if the rest of the

TRS-80 Microcomputer News, October 1983 35

program does change. Other than the published entry
points, Radio Shack, in general, will not provide you with
other information about the contents of the program. Using
only published entry points protects your software from be
coming obsolete as soon as Radio Shack issues a new
version of the program.

The second major reason for not providing the informa
tion is that Radio Shack often does not have permission from
the copyright holder to release the information. As an exam
ple, Microsoft BASIC on any of our machines is owned by
Microsoft. Since Microsoft owns the code, they have the right
to tell us what we can and cannot publish.

BACK TO THE PC-2
The stated function of our machine language program is

to accept keyboard entries and display the pressed key on
the LCD.

A quick glance at the memory map for System Program
ROM shows two keyboard scan routines and two routines
which output single characters to the LCD.

E243H Keyboard Scan-Wait for Character
E42CH Keyboard Scan-No Wait
ED4DH Output one character to LCD and increment
cursor position by one

ED57H Output one character to LCD
(Remember that the H after the address, as in E243H,

indicates that the number is in Hexadecimal notation and not
decimal.)

E243H
My information on the E243H Keyboard scan routine

tells me that the PC-2 will wait for a key to be pressed. Once a
key has been pressed, the key's code will be placed in the
M PU Accumulator. If a key is not pressed within about seven
minutes, the PC-2 will be turned off automatically. Once
power-down has occurred, pressing the CQJD key will return
the computer to the keyboard scan routine.

E42CH
The information on the E42CH routine states that if a key

has been pressed, the key code will be in the accumulator. If a
key has not been pressed the accumulator will contain OOH .

ED4DH
To output a character using ED4DH, the ASCII code of

the character to be displayed is placed in the accumulator
and the routine is executed. The character will be placed at
the current cursor position, and then the cursor position will
be updated.

The current cursor position is stored in memory location
7875H. According to our information, if the old cursor posi
tion (before the call to ED4DH) was less than 96H the new
cursor position (stored in 7875H) will be the old position plus
6H. If the old cursor position was 96H or greater, the new
position will be OOH.

ED57H
To display a character using the ROM routine at ED57H,

place the ASCII value of the character to be displayed into the
accumulator and execute the ED57H routine. The character
will be displayed at the current cursor location and the cursor
position will not be updated.

LET'S WRITE THE PROGRAM
I try to program conservatively when I use machine

language. What I mean by this is that I try to disturb as few

36 TRS-80 Microcomputer News, October 1983

things as I can. So, the first part of my program will "save the
MPU registers." What I mean by this is that I will save a copy
of the various registers so I can restore the M PU when I am
finished with my program. This is done by using the appropri
ate push (PSH) instructions to "push" the register values onto
the stack.

FD CB PSH A
FD BB PSH X
FD 9B PSH Y
FD AB PSH U

Now that I have saved a copy of the registers, I want to
set the PC-2's cursor position to the left side of the LCD. This
would make the cursor position (stored in 7578H) zero (0).

BS 00 LDI A, 00H
4A 75 LDI XL, 75H
4B 78 LDI XH, 78H
0E STA (X)

Notice that I used three LoaD Immediate (LOI) instruc
tions. The first LOI puts the cursor position (OOH) into the
M PU 's Accumulator (A register.) The next two LDls load the X
register with the address which stores cursor position
(7578H). The fourth instruction (STA) tells the MPU to put the
value currently in the A register into the memory location
which is currently in the X register.

Now that the cursor is where I want it, it is time to get a
keystroke from the keyboard. Since the only thing I want to do
is to get a keystroke, I choose to use the routine which waits
for a key to be pressed before returning. A ROM routine is
executed by using the Subroutine JumP (SJP) command.

BE E2 43 SJP E243H

We learned earlier that once a key is pressed, the PC-2
stores the ASCII value of the key in the A register. Both display
routines I am considering require the ASCII value of the
character I want displayed to be in the A register. Since the
keyboard scan routine already put the ASCII value in the A
register, all I need to do is use a subroutine jump to the proper
display routine.

BE ED 4D SJP ED4DH

I chose to display each character in cursor position 0, so I
used the display routine at ED4DH.

The purpose of this program was to get a character from
the keyboard and to display it on the LCD. My program has
done that, so I restore the registers by POPping their values
(in reverse order) off the stack.

FD 2A POP U
FD lA POP Y
FD 0A POP X
FD 8A POP A

There is one final task which any machine language
program which is called from BASIC (as this one will be) must
perform and that is to return control of the PC-2 to BASIC. This
is accomplished by executing a return command.

9A RTN

Here is the completed machine language program
along with various comments so I can remember what is
happening.

FD CB
FD 88
FD 98

PSH A
PSH X
PSH Y

'Save Registers

FD AB
BS 00
4A 7S
48 7B
0E
BE E2 43
BE ED 40
FD 2A
FD lA
FD 0A
FD 8A
9A

PSH U
LDI A, 00H
LOI XL, 75H
LDI XH, 7BH
STA (X)
SJP E243H
SJP ED4DH
POP U
POP Y
POP X
POP A
RTN

'Cursor Position
'Cursor Storage
' Location
'Store Cursor
'Read Keyboard
'Display Character
'Restore Registers

'Return to BASIC

TURN IT INTO A BASIC PROGRAM

program. Notice the use of a leading '&' to indicate that the
values are in Hex.

Line 110 contains the address (minus one) where I will
begin storing the machine language program in memory.

Lines 120-150 POKE the machine language routine into
PC-2 RAM memory. Line 160 updates the memory pointer
from line 11 O so that it contains the actual starting address of
my routine (17000 decimal).

Line 170 tells me that the machine language program
has been put into memory and will begin executing with the
next instruction.

Now that I have the machine code for rny program, I
need a way to get the program into the PC-2 and executed. A
very straight forward way to do this in the PC-2 is to put the
machine language program into a BASIC program shell like
the following:

Line 180 tells BASIC to turn control of the PC-2 over to
the machine language program which begins at location M
(my memory pointer). The PC-2 will set the cursor position to
zero, wait for a key to be pressed on the keyboard, display the
proper character and return to BASIC.

Line 190 tells BASIC to go back to line 180 and execute
the machine language program again.

10 WAIT 0
20 DATA &FD, &CB,
30 DATA &FD, &98,
40 DATA &BS, &00'
S0 DATA &4B, &7B,
60 DATA &BE, &E2,
70 DATA &BE, &ED,
B0 DATA &FD, &2A,
90 DATA &FD, &0A,
100 DATA &9A
110 M=l6999
120 FOR I=l TO 30
130 READ A
140 POKE M+l, A
1S0 NEXT I
160 M=M+l
lN PRINT II

1B0 CALL M
190 GOTO 1B0

&FD, &BB
&FD, &AB
&4A, &75
&0E
&43
&4D
&FD, &lA
&FD, &BA

READY"

THAT IS ALL THERE IS TO IT!
If you have followed this series of articles all the way

through, you now have enough information about the PC-2
and how it operates to begin writing your own programs in
machine language.

Next month we plan on giving you some additional infor
mation about the various ROM subroutines which are avail
able to you in the PC-2.

A CLOSING GIFT

Line 10 simply sets the PC-2 PRINT command delay
time to 0.

Operation codes (op-codes, mnemonics) are short
names which programmers give to machine language com
mands to make them more readable, and more remember
able. We have given you several. lists with op-codes and have
provided some detail on what the commands do. At least one
person has asked "How am I supposed to pronounce those
funny looking things?"

Lines 20-100 contain DATA statements into which I have
placed the hexadecimal values for my machine language

Below is a listing of the various PC-2 op-codes and a
recommended "name" or pronunciation for each.

Op-Code

D
CPA
CPI
BIT
Bii

SOE
SIN
STX

Suggested Name

ubtract Immediate
Decimal Subtract
AND Accumulator
AND Immediate
OR Accumulator

ecrement
Compare Accumulator
Compare Immediate
Bit
Bit Immediate

tore ccumulator
Store and Decrement
Store ahd Increment
Store X

Op-Code Suggested Name

ompare and Increment
Rotate Left
Rotate Right
Shift Left
Shift Right

lear ivider
Accumulator to Port
Port Input to Accumulator
Set PU
Reset PU

Op-Code

BHS
BHR
BZS
BZR

Suggested Name

ranc arry eset
Branch Half Carry Set
Branch Half Carry Reset
Branch Zero Set
Branch Zero Reset

TRS-80 Microcomputer News, October 1983 37

Pocket Computer

PC-2 Assembly Language-Part 6
By Bruce Elliott

This is the sixth in a series of articles which describe the
MPU (microprocessor unit) used in the Radio Shack PC-2
pocket computer. It is our intention to include specific infor
mation about the 8-bit CMOS microprocessor, the machine
code used by the microprocessor, as well as information
about the PC-2 memory map, and certain ROM calls which
are available. Please realize that much of what we are talking
about refers to the overall capabilities of the MPU, and does
not imply that all of these things can be done with a PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi
guities which occur in the articles. but can not reply to ques
tions outside the scope of these articles. Further. published
copies of TRS-80 Microcomputer News are the only source of
this information. and we will not be maintaining back issues.

In this article we want to present information on some of
the PC-2 ROM calls which are available.

When you are going to use a ROM call. there are four
items which you want to be concerned with:

1 . Entry Address
2. Entry Conditions
3. Exit Conditions
4. Flags
The Entry Address is the address you use in the CALL

statement from BASIC or a SJP call from machine language.
The Entry Conditions are conditions you must fulfill if the

routine is to function properly. Normally, entry conditions
specify where information must be and what information you
must put in the MPU registers for the routine to function
properly.

The Exit Conditions tell you where you will find the result
of the operation (if there is a result) or provide you with other
information about how things will change as a result of using a
particular ROM call.

If a ROM call makes particular changes to any of the
machine's flags, this information will be noted so you can
properly interpret the results you get.

A CAUTION
I have not had time to test the information which is

provided below on ROM calls. The information provided is as
accurate as I could make it from the materials I am working
with. Test any ROM call for proper operation BEFORE you
use it in a program. Remember that the 'H' following a
numeral indicates hexadecimal notation.

CURSOR INFORMATION
The PC-2 cursor pointer is located at 7875H. This loca

tion is used by the PC-2 to keep track of where the cursor
should be. If you are working exclusively in machine lan
guage, updating 7875H is all that is needed for cursor
location.

If you are working from BASIC, and wish to update the
cursor location directly using POKEs or CALLs, you must
also set bit O of location 7874H. Setting this bit from machine
language can be accomplished by:

ORI 7874H, 01H
This operation is done automatically when you use the

CURSOR or GCURSOR BASIC commands.
If you execute a ROM call which resets the cursor pointer

and are going to return to BASIC, you must set bit 0 of
location 7874H as described above.

If you wish to reset the cursor from machine language.
you can use the following code:

ANI 7874H. OFEH
ANI 7875H, OOH
To increment the cursor pointer. use the following:

If you are displaying characters:
(7875H) = (7875H) + 06H

If you are displaying graphics:
(7875H) = (7875H) + 01 H

Note: (7875H) must be between OOH and 9BH.

SYSTEM CALLS FOR THE LCD DISPLAY
Output one character to the LCD

1. System call address: ED57H
2. Entry Conditions:

a. The ASCII character code for the character to be
displayed must be in the ,A.CC (Accumulator) before
making the call.

b . The location where the character will be placed is
determined by the content of the cursor pointer.

3. Exit Conditions: The cursor pointer does not change.
4. Flags: Carry = 0 The cursor stays between OOH and 95H

on call.
= 1 The cursor stays in 96H on the call.

Output one character to the LCD and increment the
cursor position by one character (6H).
1. System call address: ED4DH
2. Entry Conditions: The ASCII character code for the char

acter to be displayed must be in the ACC (Accumulator)
before making the call.

3. Exit Conditions: If the cursor position before the call was in
the range OOH to 95H. then the new cursor position equals
the old position plus 6H. If the cursor position before the
call was 96H or larger. then the new cursor position is set
equal to zero.

4. Flags:
Outputting n characters to the LCD.
1. System call address: EDOOH
2. Entry Conditions:

a. The 16 bit starting address for the string to be dis
played is placed in the U register (OOOOH < = U < =
FFFFH).

TRS-80 Microcomputer News, February 1984 43

b. The length of the character string is placed in the
Accumulator (01 H < = ACC < = 1 AH).

c. The cursor pointer indicates where on the LCD the
computer is to begin displaying the string.

3 . Exit Conditions: The cursor pointer is updated.
4. Flags: Carry = O The cursor position is set to the right

most end of the displayed character
string on the LCD.

1 The specified character string ended in
the 26th LCD column. or the string was
too long to be displayed within 26 col
umns. The cursor will be steady, indica
ting the last character displayed.

The number of characters specified in the accumulator is
output from consecutive addresses beginning with the ad
dress specified in the U register The characters will be placed
on the LCD beginning with the position indicated by the
cursor pointer. The cursor pointer can be set from machine
language. or by using the BASIC CURSOR or GCURSOR
commands. If the information to be displayed exceeds the
156th dot on the LCD. the excess information will not be
displayed.

Outputting n characters to the LCD beginning from char
acter position 1 .
1. System call address: ED3BH
2. Entry Conditions:

a. The 16 bit beginning address location of the string to
be displayed is stored in the U register (OOOOH < = U
(= FFFFH).

b. An 8 bit number indicating the length of the character
string is stored in XL (The lower half of the X register.
01H < = XL<= 1AH).

3 . Exit Conditions:
4. Flags: Carry = 0 The character string has been d is

played in 25 or fewer columns.
= 1 The character string reached or ex

ceeded the 26th column.
Transferring 1 byte of data (1 dot column of graphic

information) to the current cursor position.
1. System call address: EDEFH
2. Entry Conditions: The byte representing the graphic pat

tern to be displayed is placed in the accumulator.
3 . Exit Conditions:

a. The data is transferred to the current cursor position.
which does not change.

b. The contents of ACC and the X and U registers may
change.

c. The content of the Y register will not change.
4. Flags:

DATA CONVERSIONS
Converting two bytes of ASCII code (0 - 9, A - F only) into

a one byte hexadecimal value.
1. System call address: ED95H
2. Entry Conditions: The X register should contain the ad

dress of the first of two consecutive bytes in memory which
contain the ASCII characters.

3 . Exit Conditions:
a. The X register will be incremented by 2
b. The U and Y registers will be unchanged
c. The ACC will contain the converted hex value.

4. Flags:

44 TRS-80 Microcomputer News. February 1984

DISPLAY THROUGH A BUFFER
Data can be placed into an 80-byte buffer (7BBOH -

7BFFH) and then displayed as needed by specifying the
proper cursor address in the buffer.
1. System call address: E8CAH
2. Entry Conditions:

a. Any character string which is placed in the buffer must
have a OOH code as the last character. This means
that the longest allowable character string is 79 char
acters plus the OOH end code.

b . The Y register holds the cursor pointer for the buffer.
The documentation does not specify what value goes
into Y. Since Y is 16 bits long, I presume that you would
use the actual memory address within the buffer.

c. Address 7880H contains a parameter which deter
mines how the contents of the buffer are to be
displayed:

If the binary content of 7880H is 0100 0000. then the
character string stored in the buffer is output to the
LCD using the content of the Y register as the cursor
pointer.

Note: If the number of characters in the buffer is 26 or
less. then all of the characters are d isplayed on the
LCD starting from the left side of the LCD. The cursor
pointer (7875H) has no effect on this operation. If the
number of characters in the buffer is greater than 26.
the character in the address specified by the Y register
and the PRECEDING 25 characters are displayed on
the LCD starting at the left side of the LCD.

If the binary content of 7880H is 0000 0000. then the
cursor pointer in the Y register is ignored and he first
26 characters stored in the buffer are output to the
LCD.

If the binary content of 7880H is 001 O 0000, then
numeric data stored in memory addresses 7 AOOH -
7A07H are output to the LCD.

Note: See below for a discussion of the 7 AOOH
7 A07H buffer.

3. Exit Conditions:
4. Flags:

The 7 AOOH - 7 A07H Buffer

The PC-2 documentation describes three possible sets
of data for the 7 AOOH buffer:

Decimal Values:
A decimal value may fall into the range

9.999999999 x 1 OE99 = x = 9.999999999 x 1 OE99.
7 AOOH contains the exponent (negative exponents are ex

pressed as complements: 03H = x 10E3. 1 FH =
x 10E31, and FFH = x 10E-1)

7 A01 H contains the sign of the mantissa (OOH = + . BOH = -)
7 A02H - 7 A06H contains the mantissa.
7A07H contains OOH.
Examples
7AOOH 7A07H
OOH OOH OOH OOH OOH OOH OOH OOH = 0.0
OOH OOH 12H 34H 50H OOH OOH OOH = 1.2345
FEH OOH 98H 76H 54H 32H 12H OOH = 0.9876543212
08H 80H 54H 32H OOH OOH OOH OOH = -5.432 x 10

Integer Values:
An integer value may fall into the range -32768 < = x < =
32767.
7AOOH-7A03H - Don't Care
7A04H-B2H
7A05H- 7A06H Binary number in complements (e.g. OOH

OOH = 0 , FFH FBH = -5. 7FH FFH = 32767)
7A07H-Don't Care
Character Strings:
7AOOH- 7A03H- Don't Care
7A04H-DOH
7A05H-Upper two bytes of string address in memory
7 A06H- Lower two bytes of string address in memory

(string address can be in the range OOOOH - FFFFH)
7A07H- Length of the string (range 01H - SOH)

Note: This last set of conditions (for strings) seems to
imply that a string buffer can ~ anyplace in memory.
rather than being restricted to 7BBOH - 7BFFH. Test this
before relying on it.

CASSETTE 1/0 AND CONTROL
During tape 110 activities, the paper feed action of the

printer is inhibited.
Turn Tape Drive On
1. System call address: BF11 H
2. Entry Conditions: Memory address 7879H is used to spec

ify certain conditions:
Bit 7: O = CMT input port closes; select 0 for CMT input.

1 = CMT input port opens; select 1 for CMT input.
Bit 4: 0 = Remote 0

1 = Remote 1
3. Exit Conditions:
4 Flags:

Turn Tape Drive Off

1. System call address: BF43H
2. Entry Conditions:
3. Exit Conditions: Remote drive 0 is turned off uncondition

ally. Remote drive 1 is turned off or on depending on bit 7 of
an unspecified address (probably 7879H). If bit 7 is 0 the
drive is OFF, and if bit 7 is a 1 then, the drive is ON. This bit
can be set using the BASIC commands RMT ON and RMT
OFF.

4. Flags:

Construct Tape Synchronization Header

The header. a 40-byte data set. consists of the synchroni
zation header, a file name. file mode, and other data. This
header is created inside the computer (addresses 7B60H -
7B87H) and output to tape.
1. System call address: BBD6H
2. Entry Conditions: The file mode (00 =Machine Object,

01 =Program, 02 ... Reserve, 04 = Data) must be placed in
the accumulator.

3. Exit Conditions:
a. An 8 byte synchronization header will be in 7B60H -

7B67H
b. File mode will be in 7B68H
c. OOH characters will be placed in locations 7B69H -

7B87H.

4. Flags:

A program file name (16 or fewer characters) can be
placed in memory locations 7B69H - 7B78H. if you wish.
Address locations 7B79H - 7B87H may be used for your own
purposes.

Output Tape Synchronization Header

1 . System call address: BCE8H
2. Entry Conditions:

a. Bit seven of address 7879H must be zero and bit four
will be a zero for remote O and a one for remote 1 .

b. Whether the PC-2 will beep or-not during cassette 110
is controlled by the BASIC commands BEEP ON and
BEEP OFF, or by setting bit zero of 786BH .

3. Exit Conditions:
4. Flags:

Send a Character to Tape

1. System call address: BDCCH
2. Entry Conditions: Character to be output is placed in the

Accumulator. The call to write the synchronization header
must be used before outputting data using this system call.

3. Exit Conditions:
4. Flags:

Write a tape file

Files can be written by specifying the start address of the
data and the number of bytes to be output.
1 . System call address: BD3CH
2. Entry Conditions:

a. The X register should contain the start address
(OOOOH (= X (= FFFFH) for the file to be written.

b. The U register should contain the number of bytes to
be written minus one (OOOOH < = U < = FFFFH).

3. Exit Conditions: Check sum data is output at the rate of 2
bytes for each 80 bytes written. The number of check sum
bytes is not included in the U register number of bytes to be
output.

4. Flags: CARRY = O if Output ended normally
= 1 if BREAK key was pressed

Read Tape Synchronization Header

Before the header can be read from tape, you must
construct a header using the BBD6H call. This will specify the
file type. If you are searching for a particular file, you may
place the file name in address locations 7B69H - 7B78H. If
you specify a file name, the tape will be searched for a
matching name. If you do not specify a file name (file name =
all OOH characters) then file names will be ignored during
input.

1. System call address: BCE8H
2. Entry Conditions:

a. build a header with file type
b. specify a file name if you wish.
c. Set 7879H: Bit Seven = 1

Bit Four = O for Remote 0
= 1 for Remote 1

TRS·80 Microcomputer News. February 1984 45

3. Exit Conditions:
a. 7B91 H. 7BAOH will contain the 16 character file name

(padded with OOH characters if file name was less than
16 characters)

b. ?BA 1 H · 7BAFH will contain whatever was in 7B79H ·
7B87H when the file was written to tape.

4. Flags: Carry = 0 Reading finished
= 1 BREAK key pressed

Read a Character from Tape

1 . System call address: BDFOH
2. Entry Conditions:
3. Exit Conditions: The data value read from the tape is

placed in the accumulator.
4. Flags: Carry = 0 Byte read properly

= 1 BREAK key was pressed

Read a file from tape

1. System call address: BD3CH
2. Entry Conditions:

a. The X register contains the first memory address
(OOOOH < = X < = FFFFH) that the file is to be loaded
into.

b. The U register contains the number of bytes minus
one (OOOOH < = U < = FFFFH) to be read from tape.

c. Address 7879H bit seven contains zero
bit six = 0 for data read

= 1 for data verify
3. Exit Conditions:

a. Check sum information is autorPatically checked dur·
ing tape input.

b. The X register contains the address of the last data
byte plus one.

4. Flags: Carry = O if loading ended normally
= 1 abnormal end, check H and V flags

H = 1 if C = 1 then BREAK key pressed
= 0 check V flag

V = 1 if C = 1 and H =0 then data in memory
and the data from the tape did not verify
properly.

= O if C = 1 and H = 0 then a check sum error
occurred.

Finishing Tape 1/0 Activities

When you are finished using tape 110 you should inform the
system.

1 . System call address: BBF5H
2. Entry Conditions: Bit seven of 7879H should be a zero to

terminate data output or a one to terminate data input.
3. Exit Conditions:

a. The serial port is reset
b. Printer Paper Feed is enabled
c. Cassette motor drives are turned off.

4. Flags:

BASIC Program Tapes

The PC-2 creates and reads tapes for BASIC program files
using the file read and write routines described here.
Before the synchronization header is written to tape. the

46 TRS-80 Microcomputer News, February 1984

PC-2 stores the length of the program (in bytes) minus
one in locations 7B85H and 7B86H. This information is
then recorded as part of the synchronization informatiori
for later use in reading the file. When the header informa
tion is read back during a synchronization header read.
the length information is in ?BACH and 7BADH.

KEYBOARD INPUT CALLS
Scan Keyboard, wait for a key to be pressed

1. System call address: E243H
2. Entry Conditions:
3. Exit Conditions:

a. Key code is in the accumulator
b. ! SB IE T), c:o:::E:D, and CSJ!1J:J do not cause

this routine to return.
c. Auto power off will occur after about seven minutes if no

key is pressed.
d . If the BREAK key is entered, execute the following:

ANI #FOOBH. OFDH (FDH E9H FOH OBH FOH)
4. Flags: Carry 0 = Accumulator has key code

1 = BREAK key, Accumulator = OEH

Key Code Table
0 1 2 3 4 5 6 7

0 SPACE 0 @ p p
1 (SHIFn F1 1 A Q a q
2 (SML) F2 2 B R b r
3 F3 # 3 c s c s
4 F4 $ 4 D T d t
5 F5 % 5 E u e u
6 F6 & 6 F v f v
7 7 G w g w
8 +- CL 8 H x h x
9 6 RCL 9 I y y ~

A ! CA J z j z
B i (DEF) + K rad k
c INS < L I
D ENTER DEL M n m
E BREAK > N /\ n
F OFF MODE ? 0 0

Scan keyboard and Return

1. System call address: E42CH
2. Entry Conditions:
3. Exit Conditions:

a. If no key was pressed. accumulator = OOH
b. If a key was pressed, Key code is in accumulator

4. Flags:

NUMERIC FUNCTION CALLS
From the documentation, it appears that numeric func

tions are called with the X register pointing to 7 AOOH · 7 A07H
and the Y register pointing to 7A1 OH · 7A17H if Y is needed.
Results appear to always be stored in 7AOOH · 7A07H.
Numeric data is stored in these memory areas as previously
described.

Two Variable Numeric Functions
Addition X + Y-+ X
Subtraction X · Y-+ X
Multiplication • X • Y-+ X
Division X I Y-+ X
Exponentiation XII Y -+ X

EFBAH
EFB6H
F01AH
F084H
F89CH

Single Variable Numeric Function

Square Root
Logarithm

Exponentials

Sine
Cosine
Tangent
Arcsine
Arccosine
Arctangent

Absolute Value
Signum Function
Integer Function

SOR X-+X
LN X-+X
LOG X-+X
EXP X-+X
1 O/\X-+ X
SIN X-+X
COS X-+X
TAN X-+X
ASN X-+X
ACS X-+X
ATN X-+X
DEG X-+X
OMS X-+X
ABS X-+X
SGN X-+X
INT X-+X

OPERATIONS WITH STRINGS
ASC and LEN Subroutines

1 . System call address: 09DDH
2. Entry Conditions:

FOE9H
F161H
F165H
F1CBH
F104H
F3A2H
F391H
F39EH
F49AH
F492H
F496H
F531H
F564H
F597H
F590H
F5BEH

a. Character string information is stored in 7 A04H · 7 A07H as
previously described.

b. YL "" 60H for ASC
= 64H for LEN

3. Exit Conditions:
a. The result is in 7 AOOH · 7 A07H
b . UH contains the error code (OOH is a normal finish) if an

error occurred.
4. Flags:

CHR$ Subroutine

1. System call address: 0981 H
2. Entry Conditions:
a. Integers from 0 · 255 are placed into 7A07H.
b. 7894H = 1 OH
3. Exit Conditions:
a. If UH = 0 then a proper exit occurred. otherwise UH

contains the error code.
b. 7B10H contains the ASCII code
c. 7 A04H · 7 A06H contain C 1 H 7BH 1 OH
d. If the ASCII code was OOH then 7 A07H contains OOH

otherwise, 7 A07H contains 01 H.
4. Flags:

VAL Subroutine

1 . System call address: 0907H
2. Entry Conditions: string information is in 7AOOH · 7A07H.
3. Exit Conditions:
a. The result is in 7 AOOH · 7 A07H
b. UH contains the error code (OOH is a normal finish) if an

error occurred.
4 . Flags:

STR$ Subroutine

1. System call address: 09CFH

2. Entry Conditions:
a. numeric value to be converted is in 7 AOOH · 7 A07H
b. 7894H = 1 OH
3. Exit conditions:
a. The string pointer is in 7 AOOH · 7 A07H
b. The actual character string is stored at 781 OH and

following.
c. UH contains the error code (OOH is a normal finish) if an

error occurred.
4. Flags:

RIGHT$(X$,Y), LEFT$(X$,Y). and M10$(X$.Y.Z)
Subroutines

1. System call address: D9F3H
2. Entry Conditions:

RIGHT$ LEFT$ MID$
(7890H) ((7891 H)- 8 same ((7891H)-16
(7892H) (7890H)+8 same (7890H) + 16
(7894H) 10H 10H 10H
7AOOH- y y z
7A07H
(7890H)- X$ X$ X$
(7890H) + 7
(7890H)+8· y
(7890H) + 15
YL 02H ?AH 7BH
3. Exit Conditions:
a. The string pointer is in 7 AOOH - 7 A07H
b. The actual character string is stored at 781 OH and

following.
c. UH contains the error code (OOH is a normal finish) if an

error occurred.
4. Flags:

Note: (7890H) and (7891 H) cannot be overwritten or
changed. If these are changed, the routine will not
function properly.

String Concatenation

1 . System call address: 0925H
2. Entry Conditions:
a. 7894H = 1 OH
b. Information on the first character string is stored in 7 AOOH ·

7A07H
c. Information of the second character string is stored in

7A1 OH . 7A17H in the same format as previously
described.

3. Exit Conditions:
a. Information on the new character string is placed in 7 AOOH

· 7A07H.
b. Actual concatenated string is put in 781 OH and following

memory locations.
c. If an error occurs. UH contains the error code.
4. Flags: ~

TRS-80 Microcomputer News. February 1984 47

