IN GENERAL

A computer in the hand is worth two back home. This is why the PC 1500 is such a marvellous little machine. But there are disadvantages. For most machines there is a mass of software available. There are many programs published in the many magazines. There are many add-ons available from the manufacturers of the computers, and from, other sources ab weil. The costs of running the PC 1500 are not entirely negligible. And programs.for other machines are seldom convertible: most are designed for a screen, not for paper.

STATUS 1500 can make life easier in many ways. But only if you theip. We need programs, particularly those using the graphics capabilities of the machine. (On cassette if possible).
We need useful subroutines, mini-programs, tips and techniques.
We need articles about special uses, and about the extra hardware. Most of all, we want to hear about your problems: if we canngt answer them maybe other readers can.

Finally, apologies to almost every reader:. For the beginner, the contents will be found too advanced. For the more sophisticated, they will be found elementary and trivial. The answer? Let us know what you want, and we will try to supply it.

Happy programming!

I: GRADR:-ROTATE ! ICSI2E 9: GLCURSOR (100, B)

2:FOR F'SLN JETIO ZN 9E9:READ as (F): NEXT F

3: RERD $U: U=18 \cap U$: $K=2.81 \sim(C A S C$ LEFTs (Us, 1)), 13): K=JNT K

4:LPRINT QSjus;
RIGHT' y yis, 1):

5:LPRINT Ws; Ts;
CHRS K;S*;CHRs
K;R1GHT\$ (Rs, 2); LEFTs (Us,1) ;RIGHTs (Rs, 1)
;MJDs (Rs,2,2)
; U; Q

6:LPRINT CHRS (K
+1): TEXT:LF 3
2: DATA "DUST", "T O", "COME", "ALL ", "WE", 3.17609 1259,94

```
                                    *** CONTENTS ***
I IN GENERAL
5 RESCUE OPERATION
I JARGON
2 FROM THE KEYBOARD
3. STATUS CODES
3. STATUS CODES
4. PEEK, POKE & MEMORY - I 8 ASCII CODES
5 "STARTER" by GT Chaplin
6 ~ B O O K ~ R E V I E W ~
6 \text { MINDBOGGLE CORNER}
7 }7\mathrm{ RESERVE
9 advertisements
```

You will be happy to hear that I know very little about computers. This means that I shall make mistakes; a friendly critic will put me right, and the mistake can be corrected - but I cannot go charging off towards distant horizons, blinding with science everyone but fellow initiates.

All disciplines have their own language. It is not so bad when they invent words: the difficulties arrive when they take ordinary English words, and give them meanings alien to - even contrary to - their ordinary everyday meaning.

The computer world has an unenviable record of arrogance in this respect. Take "parameter" for instance. Ordinarily, this means the limits of a field within which something is valid; but in the language of computers it means, not the field, but "a variable within a fixed field". I was foxed by this for a long time.
"High and low, up and down' are the most confusing of all. Is " 2 " a lower number than " 10 "? It is certainly a lower card; but when racing commentators say"The high numbers are drawn on the inside" they mean that " 2 " is on the inside, and " 23 " on the outside. "Class 1 " is higher than "class 3" ; but the sixth Form is the top of the school. In America the 7 th grade is at the bottom. So what is a "high line number"? Where is the "top of memory"?

1 do not know the answer to the first question, and do not wish to. I shall say "greater" or "smaller" number, and avoid confusion. As for the "top of memory", this at the end. The "top of memory"
for the PC 1500 is at the end , 65535. The bottom is at the beginning.
When it comes to languages, it is easier to remember. nuite simply, upside down. BASIC, an easy language, almost like English, designed for low-level programmers, is a 'high level language". Machine code , used by programmers with a high level of sophistication, is of course, a "low level language".

But STATUS 1500 will try to use ordinary common English, as far as this can be done.

FROM THE KEYBOARD

Did you know that many instructions can be given by keying them in directly, without having to write them into a program? You know about CLEAR and GOTO. But did you know about COLOR, WAIT or WAIT n, GRAPH and TEXT? TEXT is particularly useful, since it returns the pen to the left, and restores the co-ordinates to that point.

DIM is also useful from the keyboard, if you are taking DIMerisioned variables from cassette. They will not go in, unless you have DIMensioned space for them. RESTORE unfortunately cannot be written from the keyboard. If you execute a program with RUN, it RESTOREs your DATA, which will be read from the beginning: but if you start with GOTO line n, or with a DEF label, DATA will be read from where you left off.

Contrariwise, did you know that TEST, and LLIST or LLIST n (but not L'IST) can be written into a program?

STATUS CODES

STATUS CODES 0 to 4 all have important uses, although only STATUS 0 and STATUS 1 are mentioned in the Instruction Manual. STATUS 0 gives the program space remaining: STATUS 1 gives the program space used.

STATUS 2 gives the address of the first free byte for program. Thus with no program in memory, (and 8 K attachment) STATUS 2 - STATUS 1 will give 14534. With a program in memory, STATUS 2-STATUS 1 will give the true beginning of the program area: $14 \overline{533}$. Without 8 K , these addresses are 16582 and 16581 respectively. See "PEEK, POKE \& MEMORY" for details of the $8 K$ attachment with battery. Thus reference to STATUS 2 - STATUS 1 will ensure portability of programs containing PEEK and POKE (within the program area) whether add-on memory is attached or not.

STATUS 3 gives the address after the end of program space. With 8 K add-on this is not 18432 , but 24576 . This has one important use. When you write a program which includes DIMensioned variables, STATUS 0 takes no account of this, and can return as available space a quantity which is not truly available; so that when you run your program you may get ERROR 10.
However if you run that part of your program which does the DIMensioning, and then key STATUS 3-STATUS 2, the screen will display the true space still available, since STATUS 3 moves to the beginning of the space you have reserved for your DIMensioned variables.

STATUS 4 contains the Line Number of the last line executed. With this, you can turn ON ERROR GOTO into ON ERROR GOSUB. However the number contained in STATUS 4 is sometimes the number of the line in which the ERROR occurs, and sometimes that of the previous line.

Suppose a program in which you wish to ignore errors, and go straight to the line folluwing the ERROR. The following instruction will not work: 10: ON ERROR GOTO (STATUS $4+10$)
However the following pair of instructions will work:

```
10: ON ERROR GOTO 100
20: ....... (line containing error)
30:.......
100: GOTO (STATUS 4+10)
```

In this program, assuming an ERROR in line 20 , the program will immediately execute line 30. (This does not apply to Syntax Errors, and certain other types)

STATUS 5 to STATUS 255 also exist. Fortunately these are all identical with STATUS 4.

DISTRESS SIGNALS

D.G.BOWRING, of Cardiff, has some long programs whicn have been MERGED He is having some difficulty modifying them for the 'Software Board'

Can anyone help?
SIMON COX, of Exeter, would like to get hold of the Processor Instruction Set, and the Monitor Listing.

Sorry, Simon: SHARP have not released this information - at least not in English. Several other readers are keen to obtain these details. We will continue to pursue the matter.

PEEK, POKE, \& MEMORY

The memory of a computer consists of a number of locations, or 'pigeonholes'. The quantity is measured in so many ' K '. 1 K is approximately a thousand, actually 1024, which is 2 to the power of 10 . Each location has an address: in the case of the PC 1500 these addresses run fom 0 to 65535 .

Some of the areas of memory consist of ROM (read-only memory). The contents of the locations in ROM are fixed: they are freely available, but cannot be changed. The rest consist of RAM (Randon-Access Memory). The contents of locations in RAM can change according to the instructions the computer receives, whether through a program, or by direct command.

The locations only hold numbers. No characters, just numbers. This is why ASCII codes are necessary. When you write a character in your program, it is stored in the form of its code. Obviously, if you know the address at which it is stored, and have access to that address, you can put a different number in, and the character will be different. In fact, since the instructions the machine receives are all stored as numbers in the same way, it is even possible to change the computer's actions.

This is what PEEK and POKE are all about. We will concern ourselves first with the program area. For the PC 1500 when it has no extra memory, this area starts at 16581. With 8 K add-on (non-battery) this area starts at 14533 (a difference of 2 K). With the 8 K battery add-or, this address would be another 6 K less, i.e. 8389 . In all cases, so long as you have a program in the machine, the address of the first byte of program is given by STATUS 2 - STATUS 1 . The addresses 1 shall mention will relate to the machine with normal 8 K extra: you may have to do a few sums if you have a different set-up.

A very important thing to remember is: PEEK is a noun $\&$ POKE is a verb.
PEEK 12345 is a value. It means " the contents of location whose address is $12345^{\prime \prime}$. It does not mean " please see what is at that address." PEEK 12345 can be multiplied or divided or what you will, just like VAL AS, or SQUARE ROOT OF 4. It is a thing.

POKE is different. The form is : POKE 12345, n (any number). Remember, not a quantity, but the ASCII code for a character or instruction. It means "Into the location whose address is 12345 , please insert the number n !'

The first 3 bytes of each line hold the line number, and the quantity of bytes in that line. The last address of the line holds 13 , meaning ENTER, or ' new line! '

Go into PRO mode, write NEW. Write the following program: (line 20 is optional)
10: REM ABC
20: LPRINT PEEK 14538;CHR\$ PEEK 14538; PEEK 14539; CHR\$ PEEK 14539; PEEK 14540 ; CHR $\$$ PEEK 14540
30: POKE 14538,88: POKE 14539,89: POKE 14540,90
40: LLIST
(to be continued next month)

RESCUE OPERATION

Have you ever deleted a program，by writing NEW，and then regretted it？ This emergency operation will bring your program back to life，provided you have not over－written it with other code．

1）Write the original first line again，including line number，in $F R O$ mode，and ENTER it in the uiual way．If you cannct remember the exact line，it is possible to dig for it by PEEKing along the program from the beginning until you reach the results 13 and 255 ，or 13 and 0 ． I find it helpful to start all my programs with a simple 2－byte word line such as 1：TEXT or 1：CLEAR． It essential that the newly－input line be exactly the same length as the original．

2）In RUN mode，from the keyboard，POKE STATUS $2-1,0$
Your program is now restored．
3）You can scroll through it，in PRO mode，but the command LLIST will only produce the first 2 lines．You will need to write：

$$
\text { LLIST, } 64000
$$

or a number greater than your highest line number．
4）You will not be able to edit the revived program in its present state． Indeed if you try to do so，you may well destroy the program，beyond revival．
（You can change any characters，but must not alter the number of lines， nor the length of any line）．

＂STARTER＂
A mini－program by G．T．CHAPLIN

1：ARUN ：BEEP 3
2：＂＂ON ERROR GOTO 1
3：$T=T 1 M E: A=1 N T$ $(T / 180): B=T-(A$ ＊ 108 ）：$C=1 N T$（ A （108）：D＝A－C＊18 D：WAIT B
4：PRINT＂ready＂； D；C；＂83＂＇；
 \＃\＃\＃＂${ }^{n}$ ；B：USING
5：1F B＝FBEEP 5， 1日0， 280
$6: Z \$=1 \mathrm{NKEY} \$: 1 \mathrm{~F}$ ASC Z\＄〈〉日BEEP 1
7：GOTO 2s
8：＂M＂B\＄＝LEFT\＄（ STR\＄B，5）： PRINT BS： CURSOR 6：INPUT ＂set alarm hh． nm＞＂；F：BEEP 1： GOTO 2
9：＂E＂WAIT ：CLEAR ；END
10：＂P＂BEEP 2：WAIT
：CLEAR ：REM
main program

This pleasant little program is intended to go at the head of any other main program． When you turn on the computer，you will see the date－translated into English style－ and the time．The clock will go on running until you press any key．M lets you set an alarm．（Note formst？）．This will only sound while the clock is visibly running．Line 5 could be amended to initiate execution of a main program at a chosen time．E clears instructions，and ends the program．Any other key directs the program to a label， （without the use of DEF key）and this label can be any alphanumeric symbol．
You will hear 3 BEEPS when you turn on the machine，and again on any ERROR，such as pressing a key for which there is no label．

NOTE the use of a＇window＇in Line 8 which shows the time before the INPUT．The WAIT 0 instruction is essential．Note also in line 2 the label＂＂without a space．This is ASCII 0 ；and INKEY\＄gives this when there is no entry．

POCKET COMPUTERS

This is an irritating little book. Much of it is written in the sort of style that appeals to average Americans, or to English 9-year-olds: "Wow! Look what fun I'm having with my new Supersonic Pocket Computer! Zap! Bang! " or even (believe it or not) " Look what the naughty dog did to the lampost! ". However those parts of the text which deal with facts and techniques are quietly and sensibly written. The objectionable style is superficial. The print is large, and well-spaced, so there is not that much in the book, particularly since 5 pages are devoted to the same program, repeated in minutely different forms. This happens several times. It may be educational, but is hardly economical.

The most irritating thing I found about the book was that I was able to learn quite a lot from it. I thought I knew most of the elementary techniques for handling the PC 1500. I was wrong. It annoyed me to learn from a book which seems - so elementary, because it is so clearly expounded. I discovered, for instance, that all the keys, even ENTER and OFF, have ASCII numbers. I discovered how to prevent moving graphics from vanishing at the end of a run.

Most of the book consists of mini-programs rather than direct techniques. These can be extracted: you do not have to dig very deep. For the sake of understanding, no doubt, some of the code is not as compressed as it might be. There are many unnecessary brackets, and WAIT instructions are repeated although still in force.

In spite of all its faults, 1 wish 1 had acquired this book earlier. If you have had your PC 1500 since last spring, it is still worth borrowing, and if you have only had the computer since Christmas, the book is very well worth buying.

99 TIPS AND TRICKS FOR THE NEW POCKET COMPUTERS, by Jim Cole. (ARCSOFT, Maryland). 128 pp., paperbound. Distributed by ELKAN ELECTRONICS.£6.95

SOFTWARE Received for Review: EASICALC by Ian Traynor. This fascinating program will be reviewed in the March issue.

MINDBOGGLE CORNER

The program on the left is intended to draw a series of boxes across the paper, each box accompanied by a pair of BEEPs, one constant and the other varying in tone. But will the program do this? Indeed, will it RUN at all? Or will you get ERROR 1? Pick out the Syntax Errors, if any; and then RUN the orogram just as it is, to see if you are right. No prizes.

RESERVE

It is useful to be able to preserve one's RESERVE programs on cassette, so as to be able to replace them quickly - perhaps because one is experimenting, and keeps 'crashing', or because it is found useful to have various RESERVE programs for various purposes - one for graphics, and another for scientific calculations, for example. Here are 3 methods of CSAVEing RESERVE programs.

1) Go into RESERVE mode, and having set up your cassette recorder, key CSAVE without a file-name. This car be disadvantageous if you wish to record a variety of RESERVE programs.
2) CSAVE "RESERVE" (or any other file rame) when in RESERVE mode. Remember to press the SHIFT key before the irverted commas, or you will just bring up F2: since you are in RESERVE mode.
3) By POKEing. The following program will tell you what you have in your RESERVE program, in terms of ASCII characters:-
```
10: SX=STATUS 2 - STATUS 1
20: FOR F = SX-111 TO SX-1
30: LPRINT PEEK F;
40: IF PEEK F = 0 AND PEEK (F + 1) = 0 GOT0 100
50: NEXT F
100: BEEP 3: END
```

This will give your DATA. - The followingset-up is my own favorite RESERVE program. Go into RESERVE moce, write NEW. Return to RUN mode, CLOAD and RUN as a normal program.

```
    1: TEXT
    5: SX=STATUS 2-
        STATUS 1
10: ON ERROR GOTO
    100
20:FOR J=1TO 6
30: READ K
40: POKE K, 73
50: NEXT J
60: FOR \(X=S X-111\) T0
    SX-1
70:READ Y
80: POKE \(X, Y\)
90: NEXT \(X\)
180: BEEP 3: END
110: DATA SX-189, SX
    \(-163, S X-162,5 X\)
    \(-137,5 x-136,5 x\)
    \(-135\)
120: DATA 1,58, 3, 24
    \(1,164,64,5,59\),
    \(6,44,14,44,9,5\)
    8
130: DATA 13, 41, 45,
    \(40,12,240,183\),
    \(40,10,241,111\),
    \(11,241,161\)
```

a) Lines $20,30,40, \varepsilon 110$ display $1,11, \varepsilon 111$ when you switch rows.
b) Lines 120 and 130 contain the DATA for the RESERVE program. Figures 1 to 6 refer to the locations on Row 1. Figures 17 to 22 would refer to locations on Row 11 Figures 9 to 14 are for locations on Row 111
c) Please note that it does not matter in which order these locations are given; you will see that 14,44 in Line 120 (a comma at the end of Row III) is given before 9,58 (a colon at the beginning of that row.
d) However it is essential to start at the correct Address. With 8 K (non-battery) this is 14422. Without 8 K it is 16470. (In all cases these addresses are taken care of by STATUS 2-STATUS 1-111)

Here is a list of ASCII characters，in more accessible form than in the Instruction Manual（page 144）．

Some characters print on the screen，but will not LPRINT on paper．An asterisk is placed against these numbers．
CHRS 0 is null．CHRS ${ }^{1}$ to CHRS 31 do not print，but are used in the execution of programs．CHR\＄ 13 indicates＇NEW LINE＇．You will notice that it has indented itself，as has CHR\＄ 0.
CHR\＄ 17 to CHRS 22 refer to the 6 ＇Software Keys＇．A simple program using these：

```
10: WAIT 0: AS = " " : ON ERROR GOTO 20
20: A$ = INKEY$
30: IF AS \equivCHRS 17 BEEP 1, 255, 100
40: IF AS = CHR$ 18 BEEP 1, 127, 200
    etc.
100 GOTO 10
```

You could then attempt to play a scale on these keys．
CHRS 32 is a SPACE．So 1 think is CHR $\$ 96$ ．CHR\＄ 39 is the＇Insertion＇ symbol．CHRS 95 is the ordinary cursor．CHR\＄ 127 is the cursor that flashes． CHR\＄ 126 is the＇tilde＇which appears when the computer is given an instruction it cannot fulfil owing to lack of an a：tachment（i．e．LPRINT without the printer）．This symbol also appearsin the program replacing any instructions such as LPRINT which are improper if the printer is not attached．

CHR\＄ 128 to CHR\＄ 255 are identical to CHR\＄ 0 to CHR\＄ 127 －except for the fact that they do not \＆PRINT on paper，but will only print on the screen．They are however used in connection with the RS 232 interface．

All command keys，such as the Cursors，MODE，ENTER and even OFF，have ASCII codes between 1 and 31 ．

日	16	32＊	－ 48	＠ 64	P 88	96＊	P 112
1	17	！ 33	149	A 65	Q 81	a 97	Q． 113
2	18	34	250	B 66	R 82	b 98	r 114
3	19	\＃ 35	351	C 67	S 83	c 99	s 115
4	28	\＄ 36	452	D 68	T 84	d 100	¢ 116
5	21	$\% 37$	553	E 69	U 85	e 101	4117
6	22	\＆ 38	654	F 70	$\cup 86$	¢ 102	$\checkmark 118$
7	23	「 39＊	755	G 71	W 87	9103	ш 119
8	24	（ 48	856	H 72	$\times 88$	h 184	$\times 128$
9	25	） 41	957	173	Y 89	－ 105	y 121
10	26	＊ 42	： 58	J 74	Z 98	j 106	z 122
11	27	＋ 43	；59	K 75	591	k 107	f123＊
12	28	44	＜ 60	L 76	¥ 92	1108	f 124＊
13	29	－ 45	$=61$	M 77	ת 93	m 109	f 125＊
14	30	． 46	＞ 62	N 78	ค 94	ก 110	~ 126
15	31	147	？ 63	079	－ $95 *$	－ 111	䔬 127＊

[^0]
99 Tips \& Tricks

for the New Pocket Computers

99 sll-new ready-to-run programs for the TRS PC-2 and Sharp PC- 9500 pocket computers
$£ 6.95+0.500 \mathrm{P} \mathrm{\& P}$ Including LC

OUR MOST POPULAR PROGRAK THE:SHARP

techniques. Calalic Calasic

 A SPREADSHEET PROGRAK PC-1500 AND TANDY. PC-2. NEEDS PC- $15008 K$ RAK£19.95 INCLUDING VAT EASI_CALC 9500 IS A PROGRAM SYSTEM THAT 26 COLUNNS ACCROSS. MANY TO 99 ROUS CELLS AS A LARGE SPREADS THE SILE OF THE PAGE NAPE AND A 30 PAGE MANUAL DEEPSI-CALC CDMES **********RET...... DONN IN YOUR PC-1500 WITH THE CE-159 (8K BATTERY RAK) IF THE BATTERIES RUN DOXN IN ... WORTH KNOWING. TEHENSIVE MANUAL. . OUR PRI***********

 FEATURES RECHAR ...DATA CAPTURE....********** THIS PANEL HAS 140 PROGRAMS... £T9. 95

 SQARES . INCLUDES $A+* * * * * * * * * * * T$ PROGRAM FOR THE CEETMS TO 45 CHARACTERS. 19.95
 NEEDS LK OR 8K RA************* DATABASE IN MINTUURE. 140 ELTEFIND*SAVE*ETC......
 SILICON NOTEB SITH $8 K$ RAM 6 NOTES HITH (2) $-\approx \frac{1}{2}$

[^0]: Next Month：
 RESERVED WORDS \＆their 2－byte tokens
 RENUMBER－EASICALC reviewed－more
 PEEK \＆POKE－RS2 32 INTERFACE－
 WHAT TO BUY AND WHERE TO BUY IT
 and some programs．．．．．．

